Menu Close

discrete-mathematics-prove-that-n-1-1-F-2n-1-1-5-5-2-F-n-fibonacci-sequence-




Question Number 142723 by mnjuly1970 last updated on 04/Jun/21
        ....... discrete  .....  mathematics.......      prove that:                    Σ_(n=1) ^∞ (1/(F_(2n+1) −1))=^? ((5−(√5))/2)           F_n  :: fibonacci  sequence...
.discrete..mathematics.provethat:n=11F2n+11=?552Fn::fibonaccisequence
Answered by Olaf_Thorendsen last updated on 05/Jun/21
S = Σ_(n=1) ^∞ (1/(F_(2n+1) −1))  S = Σ_(n=1) ^∞ (1/((1/( (√5)))(ϕ^(2n+1) −ϕ′^(2n+1) )−1))  ϕ = ((1+(√5))/2) and ϕ′ = ((1−(√5))/2) = −(1/ϕ)  S = Σ_(n=1) ^∞ (1/((1/( (√5)))(ϕ^(2n+1) −(−(1/ϕ))^(2n+1) )−1))  S = Σ_(n=1) ^∞ (1/((1/( (√5)))(ϕ^(2n+1) +(1/ϕ^(2n+1) ))−1))  S = (√5)Σ_(n=1) ^∞ (ϕ^(2n+1) /(ϕ^(4n+2) −(√5)ϕ^(2n+1) +1))  S = (√5)Σ_(n=1) ^∞ (ϕ^(2n+1) /((ϕ^(2n+1) −(((√5)+1)/2))(ϕ^(2n+1) −(((√5)−1)/2))))  S = (√5)Σ_(n=1) ^∞ (ϕ^(2n+1) /((ϕ^(2n+1) −ϕ)(ϕ^(2n+1) −(1/ϕ))))  S = (√5)Σ_(n=1) ^∞ (ϕ^(2n+1) /((ϕ^(2n) −1)(ϕ^(2n+2) −1)))  S = (√5)Σ_(n=1) ^∞ ϕ^(2n+1) (1/(ϕ−(1/ϕ)))[((1/ϕ)/(ϕ^(2n) −1))−(ϕ/(ϕ^(2n+2) −1))]  ϕ−(1/ϕ) = ((1+(√5))/2)+((1−(√5))/2) = 1  S = (√5)Σ_(n=1) ^∞ [(ϕ^(2n) /(ϕ^(2n) −1))−(ϕ^(2n+2) /(ϕ^(2n+2) −1))]  S = (√5)Σ_(n=1) ^∞ [(1+(1/(ϕ^(2n) −1)))−(1+(1/(ϕ^(2n+2) −1)))]  S = (√5)Σ_(n=1) ^∞ [(1/(ϕ^(2n) −1))−(1/(ϕ^(2n+2) −1))]  S = (√5)((1/(ϕ^2 −1)))  S = (√5)((1/((((1+(√5))/2))^2 −1)))  S = (√5)((1/(((3+(√5))/2)−1)))  S = (√5)((1/((1+(√5))/2))) = (√5)((((√5)−1)/2)) = ((5−(√5))/2)
S=n=11F2n+11S=n=1115(φ2n+1φ2n+1)1φ=1+52andφ=152=1φS=n=1115(φ2n+1(1φ)2n+1)1S=n=1115(φ2n+1+1φ2n+1)1S=5n=1φ2n+1φ4n+25φ2n+1+1S=5n=1φ2n+1(φ2n+15+12)(φ2n+1512)S=5n=1φ2n+1(φ2n+1φ)(φ2n+11φ)S=5n=1φ2n+1(φ2n1)(φ2n+21)S=5n=1φ2n+11φ1φ[1φφ2n1φφ2n+21]φ1φ=1+52+152=1S=5n=1[φ2nφ2n1φ2n+2φ2n+21]S=5n=1[(1+1φ2n1)(1+1φ2n+21)]S=5n=1[1φ2n11φ2n+21]S=5(1φ21)S=5(1(1+52)21)S=5(13+521)S=5(11+52)=5(512)=552
Commented by mnjuly1970 last updated on 05/Jun/21
very nice mr olaf...
verynicemrolaf
Commented by Dwaipayan Shikari last updated on 05/Jun/21
Nice sir!
Nicesir!

Leave a Reply

Your email address will not be published. Required fields are marked *