Menu Close

Does-1-i-1-1-i-converge-2-i-1-1-i-converge-




Question Number 5921 by FilupSmith last updated on 05/Jun/16
Does:   (1)    Σ_(i=1) ^∞ Γ((1/i))  converge?  (2)    Π_(i=1) ^∞ Γ((1/i))  converge?
Does:(1)i=1Γ(1i)converge?(2)i=1Γ(1i)converge?
Commented by Yozzii last updated on 05/Jun/16
(1) Γ(x)Γ(1−x)=(π/(sinπx))  Γ(i^(−1) )=(π/(Γ(1−i^(−1) )sin(π/i)))  Γ(x)=∫_0 ^∞ u^(x−1) e^(−t) dt⇒Γ(1)=∫_0 ^∞ e^(−t) dt=1  lim_(i→∞) Γ(i^(−1) )=(π/(Γ(1)sinπ×0))=(π/(Γ(1)×0))=(π/(1×0))=(π/0)≠0  Since lim_(i→∞) Γ(i^(−1) )≠0,Σ_(i=1) ^∞ Γ(i^(−1) ) is not convergent.  (ii) Let (a_n ) be a sequence with each  a_n >0. If Π_(n=1) ^∞ a_n  converges to a limit  l and l≠0, then (a_n ) converges and   lim_(n→∞) a_n =1.  ⇒If (a_n ) diverges, so that lim_(n→∞) a_n ≠1,  then Π_(n=1) ^∞ a_n  diverges also.  Since lim_(i→∞) Γ(i^(−1) ) does not exist and Γ(i^(−1) )>0 for i∈N,  then Π_(i=1) ^∞ Γ(i^(−1) ) diverges.
(1)Γ(x)Γ(1x)=πsinπxΓ(i1)=πΓ(1i1)sinπiΓ(x)=0ux1etdtΓ(1)=0etdt=1limiΓ(i1)=πΓ(1)sinπ×0=πΓ(1)×0=π1×0=π00SincelimiΓ(i1)0,i=1Γ(i1)isnotconvergent.(ii)Let(an)beasequencewitheachan>0.Ifn=1anconvergestoalimitlandl0,then(an)convergesandlimnan=1.If(an)diverges,sothatlimnan1,thenn=1andivergesalso.SincelimiΓ(i1)doesnotexistandΓ(i1)>0foriN,theni=1Γ(i1)diverges.
Commented by FilupSmith last updated on 05/Jun/16
Amazing!
Amazing!

Leave a Reply

Your email address will not be published. Required fields are marked *