Menu Close

dt-1-kt-1-t-2-0-lt-k-lt-1-




Question Number 2212 by Yozzi last updated on 09/Nov/15
∫(dt/((1−kt)(√(1−t^2 ))))=?  0<k<1
dt(1kt)1t2=?0<k<1
Commented by 123456 last updated on 09/Nov/15
((ln ((√(k^2 −1))(√(1−x^2 ))+k−x)−ln (1−kx))/( (√(k^2 −1))))  c.m
ln(k211x2+kx)ln(1kx)k21c.m
Commented by prakash jain last updated on 09/Nov/15
t=sin u  dt=cos udu  ∫(du/(1−ksin u))  integrate with tan(u/2)=v  sin u=((2v)/(1+v^2 ))  cos u=((1−v^2 )/(1+v^2 ))  (1/2)sec^2 (u/2)du=dv  du=((2dv)/((1+v^2 )))  ∫(1/((1−k((2v)/(1+v^2 )))))∙((2dv)/((1+v^2 )))=∫((2dv)/(1+v^2 −2kv))  to be continued in answer.
t=sinudt=cosududu1ksinuintegratewithtanu2=vsinu=2v1+v2cosu=1v21+v212sec2u2du=dvdu=2dv(1+v2)1(1k2v1+v2)2dv(1+v2)=2dv1+v22kvtobecontinuedinanswer.
Answered by Filup last updated on 09/Nov/15
k=0  ∫(1/((1−0t)(√(1−t^2 ))))dt=∫(1/( (√(1−t^2 ))))  t=sin θ        dt=cos θdθ  =∫((cos θ)/( (√(1−sin^2 θ))))dθ  =∫((cos θ)/(cos θ))dθ  =∫dθ=θ+c           c=constant  =sin^(−1) (t)+c          −1≤t≤1       (1)    k=1  ∫(1/((1−t)(√(1−t^2 ))))dt  t=sin θ         dt=cos θdθ  =∫((cos θ)/((1−sin θ)(√(1−sin^2 θ))))dθ  =∫((cos θ)/((1−sin θ)cos θ))dθ  =∫(1/(1−sin θ))dθ         (2)  (continue)    sin^(−1) (t)<∫(1/((1−kt)(√(1−t^2 ))))dt<∫(1/(1−sin θ))dθ
k=01(10t)1t2dt=11t2t=sinθdt=cosθdθ=cosθ1sin2θdθ=cosθcosθdθ=dθ=θ+cc=constant=sin1(t)+c1t1(1)k=11(1t)1t2dtt=sinθdt=cosθdθ=cosθ(1sinθ)1sin2θdθ=cosθ(1sinθ)cosθdθ=11sinθdθ(2)(continue)sin1(t)<1(1kt)1t2dt<11sinθdθ
Commented by Filup last updated on 09/Nov/15
I′m not sure how to finish this problem  so i hope this is partially correct and on the  right track
Imnotsurehowtofinishthisproblemsoihopethisispartiallycorrectandontherighttrack
Answered by prakash jain last updated on 09/Nov/15
∫((2dv)/(1+v^2 −2kv))=∫((2dv)/((v−k)^2 +((√(1−k^2 )))^2 ))  =(2/( (√(1−k^2 ))))tan^(−1) ((v−k)/( (√(1−k^2 ))))  v=tan (u/2),u=sin^(−1) x
2dv1+v22kv=2dv(vk)2+(1k2)2=21k2tan1vk1k2v=tanu2,u=sin1x

Leave a Reply

Your email address will not be published. Required fields are marked *