Menu Close

dx-1-x-4-1-2-dx-1-ix-2-1-2-dx-1-ix-2-1-2-e-i-pi-4-d-e-i-pi-4-x-1-e-i-pi-4-x-2-1-2-e-i-pi-4-d-e-i-pi-4-x-1-e-i-pi-4-x-2-1-2-e-i-pi-4-ta




Question Number 132799 by Ñï= last updated on 16/Feb/21
∫(dx/(1+x^4 ))  =(1/2)∫(dx/(1+ix^2 ))+(1/2)∫(dx/(1−ix^2 ))  =(1/2)e^(−i(π/4)) ∫((d(e^(i(π/4)) x))/(1+(e^(i(π/4)) x)^2 ))+(1/2)e^(i(π/4)) ∫((d(e^(−i(π/4)) )x)/(1+(e^(−i(π/4)) x)^2 ))  =(1/2)e^(−i(π/4)) tan^(−1) (e^(i(π/4)) x)+(1/2)e^(i(π/4)) tan^(−1) (e^(−i(π/4)) x)+C  =Question is how to continue finish it?
dx1+x4=12dx1+ix2+12dx1ix2=12eiπ4d(eiπ4x)1+(eiπ4x)2+12eiπ4d(eiπ4)x1+(eiπ4x)2=12eiπ4tan1(eiπ4x)+12eiπ4tan1(eiπ4x)+C=Questionishowtocontinuefinishit?
Commented by Ar Brandon last updated on 16/Feb/21
x^4 +1=(x^2 +1)^2 −2x^2 =(x^2 +1)^2 −((√2)x)^2   =(x^2 −(√2)x+1)(x^2 +(√2)x+1)  (1/(x^4 +1))=((ax+b)/(x^2 −(√2)x+1))+((cx+d)/(x^2 +(√2)x+1))  a+c=0, (√2)a+b−(√2)c+d=0, a+(√2)b+c−(√2)d=0, b+d=1  b=(1/2)=d, a=−(1/(2(√2))), c=(1/(2(√2)))
x4+1=(x2+1)22x2=(x2+1)2(2x)2=(x22x+1)(x2+2x+1)1x4+1=ax+bx22x+1+cx+dx2+2x+1a+c=0,2a+b2c+d=0,a+2b+c2d=0,b+d=1b=12=d,a=122,c=122
Commented by MJS_new last updated on 16/Feb/21
arctan (a+bi) =  =(1/2)(πsign a +arctan ((b−1)/a) −arctan ((b+1)/a))+(i/4)ln ((a^2 +(b+1)^2 )/(a^2 +(b−1)^2 ))  that′s why I′d rather not...
arctan(a+bi)==12(πsigna+arctanb1aarctanb+1a)+i4lna2+(b+1)2a2+(b1)2thatswhyIdrathernot
Answered by MJS_new last updated on 16/Feb/21
∫(dx/(x^4 +1))=(1/4)∫(((√2)x+2)/(x^2 +(√2)x+1))−(((√2)x−2)/(x^2 −(√2)x+1))dx=  =∫((2x+(√2))/(4(√2)(x^2 +(√2)x+1)))+(1/(4(x^2 +(√2)x+1)))−((2x−(√2))/(4(√2)(x^2 +(√2)x+1)))+(1/(4(x^2 −(√2)x+1)))dx=  =((√2)/8)ln (x^2 +(√2)x+1) +((√2)/4)arctan ((√2)x+1) −((√2)/8)ln (x^2 −(√2)x+1) +((√2)/4)arctan ((√2)x−1) +C
dxx4+1=142x+2x2+2x+12x2x22x+1dx==2x+242(x2+2x+1)+14(x2+2x+1)2x242(x2+2x+1)+14(x22x+1)dx==28ln(x2+2x+1)+24arctan(2x+1)28ln(x22x+1)+24arctan(2x1)+C
Commented by Ñï= last updated on 16/Feb/21
I want to know how to use arctan fuction to get it back.  This method I already get it.sir.
Iwanttoknowhowtousearctanfuctiontogetitback.ThismethodIalreadygetit.sir.
Answered by Ar Brandon last updated on 16/Feb/21
∫(dx/(x^4 +1))=(1/2)∫(((x^2 +1)−(x^2 −1))/(x^4 +1))dx=(1/2)∫((x^2 +1)/(x^4 +1))dx−(1/2)∫((x^2 −1)/(x^4 +1))dx  =(1/2)∫((1+(1/x^2 ))/(x^2 +(1/x^2 )))dx−(1/2)∫((1−(1/x^2 ))/(x^2 +(1/x^2 )))dx=(1/2)∫((1+(1/x^2 ))/((x−(1/x))^2 +2))dx−(1/2)∫((1−(1/x^2 ))/((x+(1/x))^2 −2))dx  =(1/2)∫(du/(u^2 +2))−(1/2)∫(dv/(v^2 −2))=((tan^(−1) (u/(√2)))/(2(√2)))+((tanh^(−1) (v/(√2)))/(2(√2)))+C  =(1/(2(√2)))tan^(−1) (((x^2 −1)/( (√2)x)))+(1/(4(√2)))ln∣((x^2 +x+1)/(x^2 −x+1))∣+C
dxx4+1=12(x2+1)(x21)x4+1dx=12x2+1x4+1dx12x21x4+1dx=121+1x2x2+1x2dx1211x2x2+1x2dx=121+1x2(x1x)2+2dx1211x2(x+1x)22dx=12duu2+212dvv22=tan1(u/2)22+tanh1(v/2)22+C=122tan1(x212x)+142lnx2+x+1x2x+1+C
Answered by mathmax by abdo last updated on 16/Feb/21
for that find arctan(x+iy)...
forthatfindarctan(x+iy)

Leave a Reply

Your email address will not be published. Required fields are marked *