Menu Close

dx-csc-x-sec-x-




Question Number 132192 by benjo_mathlover last updated on 12/Feb/21
 ∫ (dx/(csc x + sec x))
dxcscx+secx
Answered by Dwaipayan Shikari last updated on 12/Feb/21
∫((sinx cosx)/(sinx+cosx))dx  =(1/2)∫sinx+cosx−(1/(sinx+cosx))dx  =(1/2)(sinx−cosx)−∫(dt/(1−t^2 +2t))     t=tan(x/2)  =(1/2)(sinx−cosx)+∫(1/((t−1)^2 −2))dt  =(1/2)(sinx−cosx)+(1/(2(√2)))log(((t−1−(√2))/(t−1+(√2))))+C  =(1/2)(sinx−cosx)+(1/(2(√2)))log(((tan(x/2)−1−(√2))/(tan(x/2)−1+(√2))))+C
sinxcosxsinx+cosxdx=12sinx+cosx1sinx+cosxdx=12(sinxcosx)dt1t2+2tt=tanx2=12(sinxcosx)+1(t1)22dt=12(sinxcosx)+122log(t12t1+2)+C=12(sinxcosx)+122log(tanx212tanx21+2)+C
Answered by MJS_new last updated on 13/Feb/21
weird but possible  ∫(dx/(csc x +sec x))=∫((sin x cos x)/(sin x +cos x))dx=  =((√2)/4)∫((sin 2x)/(sin ((4x+π)/4)))dx=       [t=tan^2  ((4x+π)/8) → dx=((cos^2  ((4x+π)/8))/(tan ((4x+π)/8)))dt]  =−((√2)/8)∫((t^2 −6t+1)/(t(t+1)^2 ))dt=(√2)∫(dt/((t+1)^2 ))−((√2)/8)∫(dt/t)=  =−((√2)/(t+1))−((√2)/8)ln t =  =−((√2)/4)ln ∣tan ((4x+π)/8)∣ −((√2)/2)cos ((4x+π)/4) +C
weirdbutpossibledxcscx+secx=sinxcosxsinx+cosxdx==24sin2xsin4x+π4dx=[t=tan24x+π8dx=cos24x+π8tan4x+π8dt]=28t26t+1t(t+1)2dt=2dt(t+1)228dtt==2t+128lnt==24lntan4x+π822cos4x+π4+C
Answered by Ñï= last updated on 14/Feb/21
=∫((sinxcosx)/(sinx+cosx))dx  =(1/2)∫((1+2sinxcosx−1)/(sinx+cosx))dx  =(1/2)∫(sinx+cosx−(1/( (√2)))csc(x+(π/4)))dx  =(1/2)(sinx−cosx)−(1/(2(√2)))ln∣tan((x/2)+(π/8))∣+C
=sinxcosxsinx+cosxdx=121+2sinxcosx1sinx+cosxdx=12(sinx+cosx12csc(x+π4))dx=12(sinxcosx)122lntan(x2+π8)+C

Leave a Reply

Your email address will not be published. Required fields are marked *