Menu Close

dx-e-2x-4-sec-1-e-x-4-




Question Number 76467 by kaivan.ahmadi last updated on 27/Dec/19
∫(dx/( (√(e^(2x) −4))(sec^(−1) ((e^x /4)))))
$$\int\frac{{dx}}{\:\sqrt{{e}^{\mathrm{2}{x}} −\mathrm{4}}\left({sec}^{−\mathrm{1}} \left(\frac{{e}^{{x}} }{\mathrm{4}}\right)\right)} \\ $$
Answered by john santu last updated on 28/Dec/19
let :sec u = (e^x /4) → e^x  dx=4sec u ×tan u du  I=∫ ((4sec u×tan udu)/(e^x ((√(e^(2x) −4)))))  =∫ ((4sec u.tan u du)/(4sec u(√(16sec^2 u−4))))  ∫ ((tan u du)/(2(√(4sec^2 u−1)))) = ∫ ((tan u du)/(2(√(4tan^2 u+3))))  now let tan u = β
$${let}\::\mathrm{sec}\:{u}\:=\:\frac{{e}^{{x}} }{\mathrm{4}}\:\rightarrow\:{e}^{{x}} \:{dx}=\mathrm{4sec}\:{u}\:×\mathrm{tan}\:{u}\:{du} \\ $$$${I}=\int\:\frac{\mathrm{4sec}\:{u}×\mathrm{tan}\:{udu}}{{e}^{{x}} \left(\sqrt{{e}^{\mathrm{2}{x}} −\mathrm{4}}\right)} \\ $$$$=\int\:\frac{\mathrm{4sec}\:{u}.\mathrm{tan}\:{u}\:{du}}{\mathrm{4sec}\:{u}\sqrt{\mathrm{16sec}\:^{\mathrm{2}} {u}−\mathrm{4}}} \\ $$$$\int\:\frac{\mathrm{tan}\:{u}\:{du}}{\mathrm{2}\sqrt{\mathrm{4sec}\:^{\mathrm{2}} {u}−\mathrm{1}}}\:=\:\int\:\frac{\mathrm{tan}\:{u}\:{du}}{\mathrm{2}\sqrt{\mathrm{4tan}\:^{\mathrm{2}} {u}+\mathrm{3}}} \\ $$$${now}\:{let}\:\mathrm{tan}\:{u}\:=\:\beta\: \\ $$
Commented by kaivan.ahmadi last updated on 29/Dec/19
thank you sir
$${thank}\:{you}\:{sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *