Question Number 141753 by mohammad17 last updated on 23/May/21
$$\int\frac{{dx}}{{sinx}+{cosx}} \\ $$
Commented by mohammad17 last updated on 23/May/21
$${help}\:{me}\:{sir} \\ $$
Answered by rs4089 last updated on 23/May/21
$$\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\int\frac{{dx}}{{sin}\left({x}+\frac{\pi}{\mathrm{4}}\right)}=\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\int{cosec}\left({x}+\frac{\pi}{\mathrm{4}}\right) \\ $$$$\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}{log}_{{e}} \left[{cosec}\left({x}+\frac{\pi}{\mathrm{4}}\right)−{cot}\left({x}+\frac{\pi}{\mathrm{4}}\right)\right]+{C} \\ $$
Commented by mohammad17 last updated on 23/May/21
Commented by mohammad17 last updated on 23/May/21
$${sir}\:{this}\:{answer}\:{is}\:{true}\:{or}\:{false}\:? \\ $$
Commented by mohammad17 last updated on 23/May/21
$${i}\:{think}\:{out}\:{the}\:{integral}\:{is}\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\:{not}\:\sqrt{\mathrm{2}} \\ $$
Commented by rs4089 last updated on 23/May/21
$${yes}\:{sir}\:,\:{you}\:{are}\:{right}\:, \\ $$$$\:{thank}\:{you}\:{very}\:{much} \\ $$
Answered by mathmax by abdo last updated on 23/May/21
$$\mathrm{I}=\int\:\:\frac{\mathrm{dx}}{\mathrm{sinx}\:+\mathrm{cosx}}\:\mathrm{we}\:\mathrm{do}\:\mathrm{the}\:\mathrm{changement}\:\mathrm{tan}\left(\frac{\mathrm{x}}{\mathrm{2}}\right)=\mathrm{y}\:\Rightarrow \\ $$$$\mathrm{I}\:=\int\:\:\:\frac{\mathrm{2dy}}{\left(\mathrm{1}+\mathrm{y}^{\mathrm{2}} \right)\left(\frac{\mathrm{2y}}{\mathrm{1}+\mathrm{y}^{\mathrm{2}} }+\frac{\mathrm{1}−\mathrm{y}^{\mathrm{2}} }{\mathrm{1}+\mathrm{y}^{\mathrm{2}} }\right)}\:=\int\:\frac{\mathrm{2dy}}{\mathrm{2y}+\mathrm{1}−\mathrm{y}^{\mathrm{2}} } \\ $$$$=−\mathrm{2}\int\:\:\frac{\mathrm{dy}}{\mathrm{y}^{\mathrm{2}} −\mathrm{2y}−\mathrm{1}}\:=−\mathrm{2}\:\int\:\:\frac{\mathrm{dy}}{\left(\mathrm{y}−\mathrm{1}\right)^{\mathrm{2}} −\mathrm{2}} \\ $$$$=_{\mathrm{y}−\mathrm{1}=\sqrt{\mathrm{2}}\mathrm{t}} \:\:\:−\mathrm{2}\:\int\:\frac{\sqrt{\mathrm{2}}\mathrm{dt}}{\mathrm{2}\left(\mathrm{t}^{\mathrm{2}} −\mathrm{1}\right)}\:=−\sqrt{\mathrm{2}}\int\:\frac{\mathrm{dt}}{\mathrm{t}^{\mathrm{2}} −\mathrm{1}}=−\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\int\:\left(\frac{\mathrm{1}}{\mathrm{t}−\mathrm{1}}−\frac{\mathrm{1}}{\mathrm{t}+\mathrm{1}}\right)\mathrm{dt} \\ $$$$=\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\mathrm{log}\mid\frac{\mathrm{t}+\mathrm{1}}{\mathrm{t}−\mathrm{1}}\mid\:+\mathrm{C}\:=\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\mathrm{log}\mid\frac{\frac{\mathrm{y}−\mathrm{1}}{\:\sqrt{\mathrm{2}}}+\mathrm{1}}{\frac{\mathrm{y}−\mathrm{1}}{\:\sqrt{\mathrm{2}}}−\mathrm{1}}\mid\:+\mathrm{C}\:\Rightarrow \\ $$$$\mathrm{I}=\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\mathrm{log}\mid\frac{\mathrm{tan}\left(\frac{\mathrm{x}}{\mathrm{2}}\right)−\mathrm{1}+\sqrt{\mathrm{2}}}{\mathrm{tan}\left(\frac{\mathrm{x}}{\mathrm{2}}\right)−\mathrm{1}−\sqrt{\mathrm{2}}}\mid\:+\mathrm{C} \\ $$