Menu Close

dx-x-16-4x-2-




Question Number 141943 by cesarL last updated on 25/May/21
∫(dx/(x(√(16−4x^2 ))))
dxx164x2
Answered by MJS_new last updated on 25/May/21
∫(dx/(x(√(16−4x^2 ))))=(1/2)∫(dx/(x(√(4−x^2 ))))=       [t=((2+(√(4−x^2 )))/x) → dx=−((x^2 (√(4−x^2 )))/(2(2+(√(4−x^2 )))))dt]  =−(1/4)∫(dt/t)=−(1/4)ln t =  =(1/4)ln ∣x∣ −(1/4)ln (2+(√(4−x^2 ))) +C
dxx164x2=12dxx4x2=[t=2+4x2xdx=x24x22(2+4x2)dt]=14dtt=14lnt==14lnx14ln(2+4x2)+C
Commented by cesarL last updated on 25/May/21
I need with trigonometric sustitution
Ineedwithtrigonometricsustitution
Commented by Ar Brandon last updated on 25/May/21
Then you may let x=2sinθ
Thenyoumayletx=2sinθ
Answered by mathmax by abdo last updated on 25/May/21
Ψ=∫ (dx/(x(√(16−4x^2 )))) ⇒Ψ=∫ (dx/(2x(√(4−x^2 ))))[ changement x=2sint give  Ψ=∫  ((2cost)/(4sint.2cost)) dt =(1/4)∫ (dt/(sint)) =_(tan((t/2))=y)   (1/4)∫   ((2dy)/((1+y^2 )((2y)/(1+y^2 ))))  =(1/4)∫ (dy/y)=(1/4)log∣y∣ +C =(1/4)log∣tan(t/2)∣ +C  t=arcsin((x/2)) ⇒Ψ=(1/4)log∣tan((1/2)arcsin((x/2))∣+C
Ψ=dxx164x2Ψ=dx2x4x2[changementx=2sintgiveΨ=2cost4sint.2costdt=14dtsint=tan(t2)=y142dy(1+y2)2y1+y2=14dyy=14logy+C=14logtant2+Ct=arcsin(x2)Ψ=14logtan(12arcsin(x2)+C

Leave a Reply

Your email address will not be published. Required fields are marked *