Menu Close

dx-x-2-x-1-




Question Number 65988 by mmkkmm000m last updated on 07/Aug/19
∫dx/x^2 −x+1
dx/x2x+1
Commented by mathmax by abdo last updated on 07/Aug/19
let A =∫  (dx/(x^2 −x+1)) ⇒A =∫   (dx/((x−(1/2))^2  +(3/4)))  =_(x−(1/2)=((√3)/2)t)  (4/3)   ∫   (1/(1+t^2 )) ((√3)/2)dt =(2/( (√3)))arctan(((2x−1)/( (√3))))+c .
letA=dxx2x+1A=dx(x12)2+34=x12=32t4311+t232dt=23arctan(2x13)+c.
Answered by meme last updated on 07/Aug/19
     =   −∫−(1/x^2 )dx−x+1         = −(1/x) −x+1        = −((1−x+x^2 )/x)
=1x2dxx+1=1xx+1=1x+x2x
Answered by meme last updated on 07/Aug/19
        b^2 −4ac=1−4=−3<0       ∫(dx/(1−x+x^2 ))= (2/( (√3)))arctan(((2x−1)/( (√3))))+c
b24ac=14=3<0dx1x+x2=23arctan(2x13)+c
Answered by AnjanDey last updated on 07/Aug/19
=∫(dx/(x^2 −2∙x∙(1/2)+((1/2))^2 +1−((1/2))^2 ))  =∫(dx/((x−(1/2))^2 +(((√3)/2))^2 ))  =(2/( (√3)))tan^(−1) (((x−(1/2))/((√3)/2)))+C  =(2/( (√3)))tan^(−1) (((2x−1)/( (√3))))+C
=dxx22x12+(12)2+1(12)2=dx(x12)2+(32)2=23tan1(x1232)+C=23tan1(2x13)+C

Leave a Reply

Your email address will not be published. Required fields are marked *