Menu Close

dx-x-x-2-x-1-please-help-




Question Number 66971 by Cmr 237 last updated on 21/Aug/19
∫(dx/(x(√(x^2 +x+1 ))))=?  please help
$$\int\frac{\mathrm{dx}}{\mathrm{x}\sqrt{\mathrm{x}^{\mathrm{2}} +\mathrm{x}+\mathrm{1}\:}}=? \\ $$$$\boldsymbol{\mathrm{p}\mathfrak{l}}\mathrm{ease}\:\mathrm{help} \\ $$
Commented by MJS last updated on 21/Aug/19
∫(dx/(x(√(x^2 +x+1))))=       [t=(1/x) → dx=−x^2 dt]  =−∫(dt/( (√(t^2 +t+1))))=       [u=2t+1 → dt=(du/2)]  =−∫(du/( (√(u^2 +3))))  now it should be easy
$$\int\frac{{dx}}{{x}\sqrt{{x}^{\mathrm{2}} +{x}+\mathrm{1}}}= \\ $$$$\:\:\:\:\:\left[{t}=\frac{\mathrm{1}}{{x}}\:\rightarrow\:{dx}=−{x}^{\mathrm{2}} {dt}\right] \\ $$$$=−\int\frac{{dt}}{\:\sqrt{{t}^{\mathrm{2}} +{t}+\mathrm{1}}}= \\ $$$$\:\:\:\:\:\left[{u}=\mathrm{2}{t}+\mathrm{1}\:\rightarrow\:{dt}=\frac{{du}}{\mathrm{2}}\right] \\ $$$$=−\int\frac{{du}}{\:\sqrt{{u}^{\mathrm{2}} +\mathrm{3}}} \\ $$$$\mathrm{now}\:\mathrm{it}\:\mathrm{should}\:\mathrm{be}\:\mathrm{easy} \\ $$
Commented by Cmr 237 last updated on 21/Aug/19
thank sir
$$\boldsymbol{\mathfrak{t}}\mathrm{hank}\:\mathrm{sir} \\ $$
Commented by mathmax by abdo last updated on 23/Aug/19
this integral is solved see the Q 66938
$${this}\:{integral}\:{is}\:{solved}\:{see}\:{the}\:{Q}\:\mathrm{66938} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *