Menu Close

e-1-e-1-ln-x-ln-ln-x-dx-




Question Number 142344 by mnjuly1970 last updated on 30/May/21
        𝛗:=∫^( e) _(1/e) {(1/(ln(x)))+ln(ln(x))}dx
$$ \\ $$$$\:\:\:\:\:\:\boldsymbol{\phi}:=\underset{\frac{\mathrm{1}}{{e}}} {\int}^{\:{e}} \left\{\frac{\mathrm{1}}{{ln}\left({x}\right)}+{ln}\left({ln}\left({x}\right)\right)\right\}{dx} \\ $$
Commented by Dwaipayan Shikari last updated on 30/May/21
log(x)=t  =∫((1/t)+log(t))e^t dt   =e^t log(t)+C=xlog(log(x))+C  Now (d/dt)(e^t f(t))=e^t f′(t)+e^t f(t)⇒e^t f(t)=∫e^t (f′(t)+f(t))dt
$${log}\left({x}\right)={t} \\ $$$$=\int\left(\frac{\mathrm{1}}{{t}}+{log}\left({t}\right)\right){e}^{{t}} {dt}\:\:\:={e}^{{t}} {log}\left({t}\right)+{C}={xlog}\left({log}\left({x}\right)\right)+{C} \\ $$$${Now}\:\frac{{d}}{{dt}}\left({e}^{{t}} {f}\left({t}\right)\right)={e}^{{t}} {f}'\left({t}\right)+{e}^{{t}} {f}\left({t}\right)\Rightarrow{e}^{{t}} {f}\left({t}\right)=\int{e}^{{t}} \left({f}'\left({t}\right)+{f}\left({t}\right)\right){dt} \\ $$$$ \\ $$
Commented by rs4089 last updated on 30/May/21
but , what about limit ?
$${but}\:,\:{what}\:{about}\:{limit}\:? \\ $$
Commented by Dwaipayan Shikari last updated on 30/May/21
log(log(x)) is not defined at (1/e)  log(log((1/e)))=log(−1)=iπ
$${log}\left({log}\left({x}\right)\right)\:{is}\:{not}\:{defined}\:{at}\:\frac{\mathrm{1}}{{e}} \\ $$$${log}\left({log}\left(\frac{\mathrm{1}}{{e}}\right)\right)={log}\left(−\mathrm{1}\right)={i}\pi\: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *