Menu Close

e-ax-sin-bx-dx-




Question Number 142176 by malwaan last updated on 27/May/21
∫ e^(ax)  sin bx dx = ?
eaxsinbxdx=?
Answered by Dwaipayan Shikari last updated on 27/May/21
sin(bx)=((e^(ibx) −e^(−ibx) )/(2i))  ∫e^(ax) (((e^(ibx) −e^(−ibx) )/(2i)))dx  =(e^(ax) /(2i))((1/(a+ib))e^(ibx) −(e^(−ibx) /(a−ib)))  =(e^(ax) /(2i))(((a−ib)/(a^2 +b^2 ))e^(ibx) −((a+ib)/(a^2 +b^2 ))e^(−ibx) )  =e^(ax) (((asin(bx))/(a^2 +b^2 ))−((bcos(bx))/(a^2 +b^2 )))+C
sin(bx)=eibxeibx2ieax(eibxeibx2i)dx=eax2i(1a+ibeibxeibxaib)=eax2i(aiba2+b2eibxa+iba2+b2eibx)=eax(asin(bx)a2+b2bcos(bx)a2+b2)+C

Leave a Reply

Your email address will not be published. Required fields are marked *