Menu Close

e-iax-1-x-2-dx-how-can-it-solve-this-




Question Number 143786 by mohammad17 last updated on 18/Jun/21
∫_(−∞) ^( ∞) (e^(iax) /(1+x^2 ))dx      how can it solve this
$$\int_{−\infty} ^{\:\infty} \frac{{e}^{{iax}} }{\mathrm{1}+{x}^{\mathrm{2}} }{dx}\:\:\:\:\:\:{how}\:{can}\:{it}\:{solve}\:{this} \\ $$
Commented by mohammad17 last updated on 18/Jun/21
?????
$$????? \\ $$
Answered by mathmax by abdo last updated on 18/Jun/21
Ψ=∫_(−∞) ^(+∞)  (e^(iax) /(x^2 +1))dx   considere ϕ(z)=(e^(iaz) /(z^2  +1))⇒ϕ(z)=(e^(iaz) /((z−i)(z+i)))  residus tbeorem give ∫_(−∞) ^(+∞) ϕ(z)dz=2iπ Res(ϕ,i)  =2iπ×(e^(ia(i)) /(2i))=πe^(−a)  ⇒Ψ=π e^(−a)
$$\Psi=\int_{−\infty} ^{+\infty} \:\frac{\mathrm{e}^{\mathrm{iax}} }{\mathrm{x}^{\mathrm{2}} +\mathrm{1}}\mathrm{dx}\:\:\:\mathrm{considere}\:\varphi\left(\mathrm{z}\right)=\frac{\mathrm{e}^{\mathrm{iaz}} }{\mathrm{z}^{\mathrm{2}} \:+\mathrm{1}}\Rightarrow\varphi\left(\mathrm{z}\right)=\frac{\mathrm{e}^{\mathrm{iaz}} }{\left(\mathrm{z}−\mathrm{i}\right)\left(\mathrm{z}+\mathrm{i}\right)} \\ $$$$\mathrm{residus}\:\mathrm{tbeorem}\:\mathrm{give}\:\int_{−\infty} ^{+\infty} \varphi\left(\mathrm{z}\right)\mathrm{dz}=\mathrm{2i}\pi\:\mathrm{Res}\left(\varphi,\mathrm{i}\right) \\ $$$$=\mathrm{2i}\pi×\frac{\mathrm{e}^{\mathrm{ia}\left(\mathrm{i}\right)} }{\mathrm{2i}}=\pi\mathrm{e}^{−\mathrm{a}} \:\Rightarrow\Psi=\pi\:\mathrm{e}^{−\mathrm{a}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *