Menu Close

e-ipi-1-0-e-ipi-1-e-ipi-2-1-2-e-2ipi-1-




Question Number 9255 by geovane10math last updated on 26/Nov/16
                              e^(iπ)  + 1 = 0                                 e^(iπ)  = −1                            (e^(iπ) )^2  = (−1)^2                                e^(2iπ)  = 1                              (e^(2iπ) )^i  = 1^i                                 1^i  = e^(2i^2 π)                               1^i  = e^(−2𝛑)    1^i  = 1^(a+bi)  ???  x^(a+bi)  = ???
eiπ+1=0eiπ=1(eiπ)2=(1)2e2iπ=1(e2iπ)i=1i1i=e2i2π1i=e2π1i=1a+bi???xa+bi=???
Commented by RasheedSoomro last updated on 26/Nov/16
“Squaring both sides” may not yield equivalent  statement.
Squaringbothsidesmaynotyieldequivalentstatement.
Commented by FilupSmith last updated on 27/Nov/16
e^(2iπ)  =1  e^(2iπ) =cos(2π)+isin(2π)  =1+i(0)=1
e2iπ=1e2iπ=cos(2π)+isin(2π)=1+i(0)=1

Leave a Reply

Your email address will not be published. Required fields are marked *