Question Number 143100 by lapache last updated on 10/Jun/21

Answered by qaz last updated on 10/Jun/21
![∫(√(e^x +1))dx =∫(√(u+1))(du/u) =∫((u+1)/(u(√(u+1))))du =2(√(u+1))+∫(du/( u^2 (√((1/u)+(1/u^2 ))))) =2(√(u+1))−∫((d((1/u)))/( (√(((1/u)+(1/2))^2 −(1/4))))) =2(√(u+1))−∫((d[2((1/u)+(1/2))])/( (√([4((1/u)+(1/2))^2 −1])))) =2(√(u+1))−arccosh(2((1/u)+(1/2)))+C =2(√(e^x +1))−arccosh(((2+e^x )/e^x ))+C^](https://www.tinkutara.com/question/Q143121.png)
Answered by MJS_new last updated on 10/Jun/21
![∫(√(e^x +1))dx= [t=(√(e^x +1)) → dx=((2(√(e^x +1)))/e^x )dt] =2∫(t^2 /(t^2 −1))dt=∫(2+(1/(t−1))−(1/(t+1)))dt= =2t+ln ((t−1)/(t+1)) =... =2(√(e^x +1))−x+ln (e^x +2−2(√(e^x +1))) +C](https://www.tinkutara.com/question/Q143126.png)
Answered by pticantor last updated on 10/Jun/21

Answered by mathmax by abdo last updated on 11/Jun/21

Commented by mathmax by abdo last updated on 11/Jun/21

Answered by puissant last updated on 23/Aug/21
