Question Number 6240 by sanusihammed last updated on 19/Jun/16
$$\int{e}^{{x}^{\mathrm{2}} } \:\:{dx}\: \\ $$
Commented by FilupSmith last updated on 20/Jun/16
$${I}=\int{e}^{{x}^{\mathrm{2}} } {dx} \\ $$$${I}^{\mathrm{2}} =\int{e}^{{x}^{\mathrm{2}} } {dx}\int{e}^{{y}^{\mathrm{2}} } {dx} \\ $$$$=\int\int{e}^{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} } {dxdy} \\ $$$$\mathrm{Take}\:\mathrm{Jacobian} \\ $$$${r}^{\mathrm{2}} ={x}^{\mathrm{2}} +{y}^{\mathrm{2}} \\ $$$$\mathrm{0}<\theta\leqslant\mathrm{2}\pi \\ $$$$=\int\int{re}^{{r}^{\mathrm{2}} } {drd}\theta \\ $$$$=\int{re}^{{r}^{\mathrm{2}} } {dr}\int{d}\theta \\ $$$${u}={r}^{\mathrm{2}} \:\Rightarrow\:{du}=\mathrm{2}{rdr} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int{e}^{{u}} {du}\int{d}\theta \\ $$$${I}^{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{2}}{e}^{{r}^{\mathrm{2}} } \theta+{C} \\ $$$${I}=\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\sqrt{{e}^{{r}^{\mathrm{2}} } \theta+{C}} \\ $$$${C}=\mathrm{constant} \\ $$
Commented by FilupSmith last updated on 20/Jun/16
$${I}=\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\sqrt{{e}^{{r}^{\mathrm{2}} } \theta+{C}} \\ $$$${I}=\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\sqrt{{e}^{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} } \theta+{C}} \\ $$$${x}\:{and}\:{y}\:{are}\:{equivilent}\:{variables} \\ $$$${I}=\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\sqrt{{e}^{\mathrm{2}{x}^{\mathrm{2}} } \theta+{C}} \\ $$
Commented by sanusihammed last updated on 20/Jun/16
$${Thanks}\:{i}\:{really}\:{appreciate} \\ $$
Commented by prakash jain last updated on 20/Jun/16
$${if}\:\mathrm{0}\leqslant\theta\leqslant\mathrm{2}\pi\:\mathrm{then}\:\mathrm{isn}'\mathrm{t} \\ $$$$\int\theta\mathrm{d}\theta=\mathrm{2}\pi? \\ $$
Commented by FilupSmith last updated on 20/Jun/16
$$\mathrm{I}'\mathrm{m}\:\mathrm{actually}\:\mathrm{not}\:\mathrm{sure}\:\mathrm{considering}\:\mathrm{this} \\ $$$$\mathrm{is}\:\mathrm{an}\:\mathrm{indefinate}\:\mathrm{intgral} \\ $$
Commented by nburiburu last updated on 25/Jun/16
$$\theta={atan}\left(\frac{{y}}{{x}}\right)={atan}\left(\mathrm{1}\right)=\:\pi/\mathrm{4}\:{then}? \\ $$