Menu Close

e-x-2-dx-




Question Number 6240 by sanusihammed last updated on 19/Jun/16
∫e^x^2    dx
$$\int{e}^{{x}^{\mathrm{2}} } \:\:{dx}\: \\ $$
Commented by FilupSmith last updated on 20/Jun/16
I=∫e^x^2  dx  I^2 =∫e^x^2  dx∫e^y^2  dx  =∫∫e^(x^2 +y^2 ) dxdy  Take Jacobian  r^2 =x^2 +y^2   0<θ≤2π  =∫∫re^r^2  drdθ  =∫re^r^2  dr∫dθ  u=r^2  ⇒ du=2rdr  =(1/2)∫e^u du∫dθ  I^2 =(1/2)e^r^2  θ+C  I=(1/( (√2)))(√(e^r^2  θ+C))  C=constant
$${I}=\int{e}^{{x}^{\mathrm{2}} } {dx} \\ $$$${I}^{\mathrm{2}} =\int{e}^{{x}^{\mathrm{2}} } {dx}\int{e}^{{y}^{\mathrm{2}} } {dx} \\ $$$$=\int\int{e}^{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} } {dxdy} \\ $$$$\mathrm{Take}\:\mathrm{Jacobian} \\ $$$${r}^{\mathrm{2}} ={x}^{\mathrm{2}} +{y}^{\mathrm{2}} \\ $$$$\mathrm{0}<\theta\leqslant\mathrm{2}\pi \\ $$$$=\int\int{re}^{{r}^{\mathrm{2}} } {drd}\theta \\ $$$$=\int{re}^{{r}^{\mathrm{2}} } {dr}\int{d}\theta \\ $$$${u}={r}^{\mathrm{2}} \:\Rightarrow\:{du}=\mathrm{2}{rdr} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int{e}^{{u}} {du}\int{d}\theta \\ $$$${I}^{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{2}}{e}^{{r}^{\mathrm{2}} } \theta+{C} \\ $$$${I}=\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\sqrt{{e}^{{r}^{\mathrm{2}} } \theta+{C}} \\ $$$${C}=\mathrm{constant} \\ $$
Commented by FilupSmith last updated on 20/Jun/16
I=(1/( (√2)))(√(e^r^2  θ+C))  I=(1/( (√2)))(√(e^(x^2 +y^2 ) θ+C))  x and y are equivilent variables  I=(1/( (√2)))(√(e^(2x^2 ) θ+C))
$${I}=\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\sqrt{{e}^{{r}^{\mathrm{2}} } \theta+{C}} \\ $$$${I}=\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\sqrt{{e}^{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} } \theta+{C}} \\ $$$${x}\:{and}\:{y}\:{are}\:{equivilent}\:{variables} \\ $$$${I}=\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\sqrt{{e}^{\mathrm{2}{x}^{\mathrm{2}} } \theta+{C}} \\ $$
Commented by sanusihammed last updated on 20/Jun/16
Thanks i really appreciate
$${Thanks}\:{i}\:{really}\:{appreciate} \\ $$
Commented by prakash jain last updated on 20/Jun/16
if 0≤θ≤2π then isn′t  ∫θdθ=2π?
$${if}\:\mathrm{0}\leqslant\theta\leqslant\mathrm{2}\pi\:\mathrm{then}\:\mathrm{isn}'\mathrm{t} \\ $$$$\int\theta\mathrm{d}\theta=\mathrm{2}\pi? \\ $$
Commented by FilupSmith last updated on 20/Jun/16
I′m actually not sure considering this  is an indefinate intgral
$$\mathrm{I}'\mathrm{m}\:\mathrm{actually}\:\mathrm{not}\:\mathrm{sure}\:\mathrm{considering}\:\mathrm{this} \\ $$$$\mathrm{is}\:\mathrm{an}\:\mathrm{indefinate}\:\mathrm{intgral} \\ $$
Commented by nburiburu last updated on 25/Jun/16
θ=atan((y/x))=atan(1)= π/4 then?
$$\theta={atan}\left(\frac{{y}}{{x}}\right)={atan}\left(\mathrm{1}\right)=\:\pi/\mathrm{4}\:{then}? \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *