e-x-2-dx-pi-is-this-true-if-so-how- Tinku Tara June 3, 2023 None 0 Comments FacebookTweetPin Question Number 4758 by madscientist last updated on 05/Mar/16 ∫−∞∞e−x2dx=πisthistrue,ifsohow? Answered by Yozzii last updated on 05/Mar/16 Letf(x)=e−x2(x∈R).Sincef(−x)=e−(−x)2=e−x2=f(x)thenf(x)isanevenfunction.Ingeneral,forg(u)beinganevenfunction,∫−aag(u)du=2∫0ag(u)duiftheintegralexistswhollyonu∈[−a,a].NowletI(a)=∫−aaf(x)dx.Then,I(a)=2∫0af(x)dxsincef(x)iseven.Letusnowdeterminel=lima→∞I(a)=lim2a→∞∫0af(x)dx.⇒l=2∫0∞e−x2dx.Substituteu=x2wherex⩾0.⇒x=u.Also,du=2xdx=2udx⇒12u−1/2du=dx.Atx=0,u=02=0andasx→∞,x2→∞⇒u→∞.lhencebecomesl=2∫0∞0.5u−1/2e−udu=∫0∞u−1/2e−udu.ThegammafunctionΓisgivenbytheformΓ(x)=∫0∞tx−1e−tdt(x>0).Sotrulyl=Γ(1/2).Fromtheequationfor0<x<1Γ(x)Γ(1−x)=πsinπx,letx=1/2.⇒Γ2(0.5)=πsin0.5π=π⇒Γ(0.5)=±π.Sincef(x)>0forallx⩾0,theintegraloughttobenon−negative.Hence,Γ(0.5)=πonly.⇒l=π.Butlisequivalenttotheform∫−∞∞e−x2dx.So,∫−∞∞e−x2dx=π.Themathematicalstatementistrue. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Selecting-a-random-star-is-a-1-15-chance-at-random-Lets-say-you-have-to-pick-a-second-random-star-that-is-next-to-it-Either-above-below-or-to-the-siNext Next post: the-number-27000001-has-4-prime-factors-find-thier-sum- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.