Menu Close

e-x-2-dx-pi-is-this-true-if-so-how-




Question Number 4758 by madscientist last updated on 05/Mar/16
∫_(−∞) ^∞ e^(−x^(2 ) )  dx = (√(π ))  is this true, if so how?
ex2dx=πisthistrue,ifsohow?
Answered by Yozzii last updated on 05/Mar/16
Let f(x)=e^(−x^2 )  (x∈R). Since f(−x)=e^(−(−x)^2 ) =e^(−x^2 ) =f(x)  then f(x) is an even function. In general,  for g(u) being an even function, ∫_(−a) ^a g(u)du=2∫_0 ^a g(u)du  if the integral exists wholly on u∈[−a,a].  Now let I(a)=∫_(−a) ^a f(x)dx. Then, I(a)=2∫_0 ^a f(x)dx  since f(x) is even. Let us now determine  l=lim_(a→∞) I(a)=lim_(a→∞) 2∫_0 ^a f(x)dx.⇒l=2∫_0 ^∞ e^(−x^2 ) dx.  Substitute u=x^2  where x≥0.⇒x=(√u).  Also, du=2xdx=2(√u)dx⇒(1/2)u^(−1/2) du=dx.  At x=0,u=0^2 =0 and as x→∞,x^2 →∞  ⇒u→∞. l hence becomes   l=2∫_0 ^∞ 0.5u^(−1/2) e^(−u) du=∫_0 ^∞ u^(−1/2) e^(−u) du.  The gamma function Γ is given by the  form Γ(x)=∫_0 ^∞ t^(x−1) e^(−t) dt (x>0). So truly  l=Γ(1/2). From the equation for 0<x<1  Γ(x)Γ(1−x)=(π/(sinπx)), let x=1/2.  ⇒Γ^2 (0.5)=(π/(sin0.5π))=π⇒Γ(0.5)=±(√π).  Since f(x)>0 for all x≥0, the integral  ought to be non−negative. Hence, Γ(0.5)=(√π)  only.⇒ l=(√π). But l is equivalent to the  form ∫_(−∞) ^∞ e^(−x^2 ) dx. So, ∫_(−∞) ^∞ e^(−x^2 ) dx=(√π).   The mathematical statement is true.
Letf(x)=ex2(xR).Sincef(x)=e(x)2=ex2=f(x)thenf(x)isanevenfunction.Ingeneral,forg(u)beinganevenfunction,aag(u)du=20ag(u)duiftheintegralexistswhollyonu[a,a].NowletI(a)=aaf(x)dx.Then,I(a)=20af(x)dxsincef(x)iseven.Letusnowdeterminel=limaI(a)=lim2a0af(x)dx.l=20ex2dx.Substituteu=x2wherex0.x=u.Also,du=2xdx=2udx12u1/2du=dx.Atx=0,u=02=0andasx,x2u.lhencebecomesl=200.5u1/2eudu=0u1/2eudu.ThegammafunctionΓisgivenbytheformΓ(x)=0tx1etdt(x>0).Sotrulyl=Γ(1/2).Fromtheequationfor0<x<1Γ(x)Γ(1x)=πsinπx,letx=1/2.Γ2(0.5)=πsin0.5π=πΓ(0.5)=±π.Sincef(x)>0forallx0,theintegraloughttobenonnegative.Hence,Γ(0.5)=πonly.l=π.Butlisequivalenttotheformex2dx.So,ex2dx=π.Themathematicalstatementistrue.

Leave a Reply

Your email address will not be published. Required fields are marked *