Menu Close

e-x-dx-




Question Number 5406 by 1771727373 last updated on 14/May/16
∫_(−∞) ^∞  e^x dx=?
$$\int_{−\infty} ^{\infty} \:{e}^{{x}} {dx}=? \\ $$
Commented by FilupSmith last updated on 14/May/16
S=lim_(k→∞)  ∫_(−k) ^k e^x dx  ∫e^x dx=e^x +c    S=lim_(k→∞) [e^x +c]_(−k) ^k   S=lim_(k→∞) ((e^k +c)−(e^(−k) +c))  S=lim_(k→∞) (e^k −e^(−k) )  S=lim_(k→∞) (e^k −(1/e^k ))  S=lim_(k→∞)  ((e^(2k) −1)/e^k )  use L′Hopital′s Law  S=lim_(k→∞)  (e^(2k) /(2e^k ))  S=lim_(k→∞)  (e^k /2)  ∴ S=∞
$${S}=\underset{{k}\rightarrow\infty} {\mathrm{lim}}\:\underset{−{k}} {\overset{{k}} {\int}}{e}^{{x}} {dx} \\ $$$$\int{e}^{{x}} {dx}={e}^{{x}} +{c} \\ $$$$ \\ $$$${S}=\underset{{k}\rightarrow\infty} {\mathrm{lim}}\left[{e}^{{x}} +{c}\right]_{−{k}} ^{{k}} \\ $$$${S}=\underset{{k}\rightarrow\infty} {\mathrm{lim}}\left(\left({e}^{{k}} +{c}\right)−\left({e}^{−{k}} +{c}\right)\right) \\ $$$${S}=\underset{{k}\rightarrow\infty} {\mathrm{lim}}\left({e}^{{k}} −{e}^{−{k}} \right) \\ $$$${S}=\underset{{k}\rightarrow\infty} {\mathrm{lim}}\left({e}^{{k}} −\frac{\mathrm{1}}{{e}^{{k}} }\right) \\ $$$${S}=\underset{{k}\rightarrow\infty} {\mathrm{lim}}\:\frac{{e}^{\mathrm{2}{k}} −\mathrm{1}}{{e}^{{k}} } \\ $$$$\mathrm{use}\:{L}'{Hopital}'{s}\:{Law} \\ $$$${S}=\underset{{k}\rightarrow\infty} {\mathrm{lim}}\:\frac{{e}^{\mathrm{2}{k}} }{\mathrm{2}{e}^{{k}} } \\ $$$${S}=\underset{{k}\rightarrow\infty} {\mathrm{lim}}\:\frac{{e}^{{k}} }{\mathrm{2}} \\ $$$$\therefore\:{S}=\infty \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *