Menu Close

e-x-sinx-dx-plz-give-me-answer-soon-




Question Number 1000 by rpatle69@gmail.com last updated on 13/May/15
∫e^(x  ) sinx dx=?  plz give me answer soon.
exsinxdx=?plzgivemeanswersoon.
Commented by rpatle69@gmail.com last updated on 13/May/15
please soon guys
pleasesoonguys
Answered by prakash jain last updated on 13/May/15
I=∫e^x sin xdx  Integrate by parts  I=e^x (−cos x)+∫e^x cos xdx  Integrate e^x cos x by parts  =−e^x cos x+e^x sin x−∫e^x sin xdx  =−e^x cos x+e^x sin x−I  2I=e^x sin x−e^x cos x  I=(1/2)(e^x sin x−e^x cos x)+C  (d/dx)[(1/2)(e^x sin x−e^x cos x)+C]  =(1/2)[e^x sin x+e^x cos x−e^x cos x+e^x sin x]  =e^x sin x
I=exsinxdxIntegratebypartsI=ex(cosx)+excosxdxIntegrateexcosxbyparts=excosx+exsinxexsinxdx=excosx+exsinxI2I=exsinxexcosxI=12(exsinxexcosx)+Cddx[12(exsinxexcosx)+C]=12[exsinx+excosxexcosx+exsinx]=exsinx
Commented by rpatle69@gmail.com last updated on 13/May/15
thanks
thanks

Leave a Reply

Your email address will not be published. Required fields are marked *