Menu Close

e-y-2-2-dy-




Question Number 67942 by mhmd last updated on 02/Sep/19
∫e^(y^2 /2)   dy
$$\int{e}^{{y}^{\mathrm{2}} /\mathrm{2}} \:\:{dy} \\ $$
Commented by mr W last updated on 09/Feb/21
∫e^(y^2 /2) dy=(√(π/2)) erfi((y/( (√2))))+C  ∫e^(−(y^2 /2)) dy=(√(π/2)) erf((y/( (√2))))+C  erf(), erfi() = error functions
$$\int{e}^{\frac{{y}^{\mathrm{2}} }{\mathrm{2}}} {dy}=\sqrt{\frac{\pi}{\mathrm{2}}}\:{erfi}\left(\frac{{y}}{\:\sqrt{\mathrm{2}}}\right)+{C} \\ $$$$\int{e}^{−\frac{{y}^{\mathrm{2}} }{\mathrm{2}}} {dy}=\sqrt{\frac{\pi}{\mathrm{2}}}\:{erf}\left(\frac{{y}}{\:\sqrt{\mathrm{2}}}\right)+{C} \\ $$$${erf}\left(\right),\:{erfi}\left(\right)\:=\:{error}\:{functions} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *