Menu Close

Eight-people-are-seated-around-a-circular-table-Each-person-must-shake-everyone-s-hand-but-they-must-not-shake-hands-with-the-two-persons-seated-at-their-sides-How-many-handshakes-occur-




Question Number 911 by 112358 last updated on 22/Apr/15
Eight people are seated around  a circular table. Each person  must shake everyone′s hand but  they must not shake hands with  the two persons seated at their sides.  How many handshakes occur?
$${Eight}\:{people}\:{are}\:{seated}\:{around} \\ $$$${a}\:{circular}\:{table}.\:{Each}\:{person} \\ $$$${must}\:{shake}\:{everyone}'{s}\:{hand}\:{but} \\ $$$${they}\:{must}\:{not}\:{shake}\:{hands}\:{with} \\ $$$${the}\:{two}\:{persons}\:{seated}\:{at}\:{their}\:{sides}. \\ $$$${How}\:{many}\:{handshakes}\:{occur}? \\ $$
Answered by prakash jain last updated on 22/Apr/15
This will same as number of diagonals in  an octagon.  ((8×5)/2)=20
$$\mathrm{This}\:\mathrm{will}\:\mathrm{same}\:\mathrm{as}\:\mathrm{number}\:\mathrm{of}\:\mathrm{diagonals}\:\mathrm{in} \\ $$$$\mathrm{an}\:\mathrm{octagon}. \\ $$$$\frac{\mathrm{8}×\mathrm{5}}{\mathrm{2}}=\mathrm{20} \\ $$
Commented by 112358 last updated on 23/Apr/15
Would it be possible to generalise  this problem where there are n   people and m number of persons  seated on both sides of each   person with whom hands cannot  be shaken?
$${Would}\:{it}\:{be}\:{possible}\:{to}\:{generalise} \\ $$$${this}\:{problem}\:{where}\:{there}\:{are}\:\boldsymbol{{n}}\: \\ $$$${people}\:{and}\:\boldsymbol{{m}}\:{number}\:{of}\:{persons} \\ $$$${seated}\:{on}\:{both}\:{sides}\:{of}\:{each}\: \\ $$$${person}\:{with}\:{whom}\:{hands}\:{cannot} \\ $$$${be}\:{shaken}? \\ $$$$ \\ $$
Commented by prakash jain last updated on 23/Apr/15
((n×(n−2m−1))/2)  2m, m people on either side  1, self  So each point is connected with n−(2m+1)  points.  Divide by 2 for counting each line twice.
$$\frac{{n}×\left({n}−\mathrm{2}{m}−\mathrm{1}\right)}{\mathrm{2}} \\ $$$$\mathrm{2}{m},\:{m}\:{people}\:{on}\:{either}\:{side} \\ $$$$\mathrm{1},\:{self} \\ $$$$\mathrm{So}\:\mathrm{each}\:\mathrm{point}\:\mathrm{is}\:\mathrm{connected}\:\mathrm{with}\:{n}−\left(\mathrm{2}{m}+\mathrm{1}\right) \\ $$$$\mathrm{points}. \\ $$$$\mathrm{Divide}\:\mathrm{by}\:\mathrm{2}\:\mathrm{for}\:\mathrm{counting}\:\mathrm{each}\:\mathrm{line}\:\mathrm{twice}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *