Menu Close

En-utilisant-la-transforme-de-laplace-Calculer-0-tsin-xt-a-2-t-2-dt-a-x-R-




Question Number 144057 by lapache last updated on 21/Jun/21
En utilisant la transforme de laplace  Calculer  ∫_0 ^(+∞) ((tsin(xt))/(a^2 +t^2 ))dt   ∀a,x∈R^∗
EnutilisantlatransformedelaplaceCalculer0+tsin(xt)a2+t2dta,xR
Answered by qaz last updated on 21/Jun/21
I(x)=∫_0 ^∞ ((tsin (xt))/(a^2 +t^2 ))dt  L(I(x))(s)=∫_0 ^∞ ∫_0 ^∞ ((tsin (xt))/(a^2 +t^2 ))e^(−sx) dtdx                  =∫_0 ^∞ (t/(a^2 +t^2 ))∙L(sin (xt))(s)dt                  =∫_0 ^∞ (t/(a^2 +t^2 ))∙(t/(s^2 +t^2 ))dt                  =(1/(s^2 −a^2 ))∫_0 ^∞ ((s^2 /(s^2 +t^2 ))−(a^2 /(a^2 +t^2 )))dt                  =(1/(s^2 −a^2 ))(stan^(−1) (t/s)−atan^(−1) (t/a))∣_0 ^∞                   =(1/(s^2 −a^2 ))∙(π/2)(s−a)                  =(π/(2(s+a)))  I(x)=L^(−1) ((π/(2(s+a))))=(π/2)e^(−ax)
I(x)=0tsin(xt)a2+t2dtL(I(x))(s)=00tsin(xt)a2+t2esxdtdx=0ta2+t2L(sin(xt))(s)dt=0ta2+t2ts2+t2dt=1s2a20(s2s2+t2a2a2+t2)dt=1s2a2(stan1tsatan1ta)0=1s2a2π2(sa)=π2(s+a)I(x)=L1(π2(s+a))=π2eax
Answered by mathmax by abdo last updated on 21/Jun/21
residus method Φ=∫_0 ^∞  ((tsin(xt))/(a^2  +t^2 ))dt ⇒  Φ=_(t=au)     ∫_0 ^∞  ((ausin(xau))/(a^2 (1+u^2 )))(adu) =∫_0 ^∞   ((usin(xau))/(u^2  +1))du    (we suppose a>0)  Φ=(1/2)∫_(−∞) ^(+∞)  ((ue^(ixau) )/(u^2  +1))du  let ϕ(z)=((ze^(ixaz) )/(z^2  +1)) ⇒ϕ(z)=((ze^(ixaz) )/((z−i)(z+i)))  ∫_R ϕ(z)dz =2iπ Res(ϕ,i) =2iπ×((ie^(−xa) )/(2i))=πi e^(−xa)  ⇒  Φ=(π/2)e^(−xa)     if a<0 we do the changement t=−au  generally we get Φ=(π/2)e^(−x∣a∣)
residusmethodΦ=0tsin(xt)a2+t2dtΦ=t=au0ausin(xau)a2(1+u2)(adu)=0usin(xau)u2+1du(wesupposea>0)Φ=12+ueixauu2+1duletφ(z)=zeixazz2+1φ(z)=zeixaz(zi)(z+i)Rφ(z)dz=2iπRes(φ,i)=2iπ×iexa2i=πiexaΦ=π2exaifa<0wedothechangementt=augenerallywegetΦ=π2exa

Leave a Reply

Your email address will not be published. Required fields are marked *