En-utilisant-la-transforme-de-laplace-Calculer-0-tsin-xt-a-2-t-2-dt-a-x-R- Tinku Tara June 3, 2023 None 0 Comments FacebookTweetPin Question Number 144057 by lapache last updated on 21/Jun/21 EnutilisantlatransformedelaplaceCalculer∫0+∞tsin(xt)a2+t2dt∀a,x∈R∗ Answered by qaz last updated on 21/Jun/21 I(x)=∫0∞tsin(xt)a2+t2dtL(I(x))(s)=∫0∞∫0∞tsin(xt)a2+t2e−sxdtdx=∫0∞ta2+t2⋅L(sin(xt))(s)dt=∫0∞ta2+t2⋅ts2+t2dt=1s2−a2∫0∞(s2s2+t2−a2a2+t2)dt=1s2−a2(stan−1ts−atan−1ta)∣0∞=1s2−a2⋅π2(s−a)=π2(s+a)I(x)=L−1(π2(s+a))=π2e−ax Answered by mathmax by abdo last updated on 21/Jun/21 residusmethodΦ=∫0∞tsin(xt)a2+t2dt⇒Φ=t=au∫0∞ausin(xau)a2(1+u2)(adu)=∫0∞usin(xau)u2+1du(wesupposea>0)Φ=12∫−∞+∞ueixauu2+1duletφ(z)=zeixazz2+1⇒φ(z)=zeixaz(z−i)(z+i)∫Rφ(z)dz=2iπRes(φ,i)=2iπ×ie−xa2i=πie−xa⇒Φ=π2e−xaifa<0wedothechangementt=−augenerallywegetΦ=π2e−x∣a∣ Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: what-is-the-line-passing-through-2-2-1-and-parallel-to-2i-j-k-Next Next post: p-x-x-1-2-Q-x-3x-8-p-x-x-2-Q-x-R-R- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.