Menu Close

eplcit-f-x-0-1-ln-x-t-t-2-dt-with-x-gt-1-4-2-calculate-0-1-ln-t-2-t-2-dt-




Question Number 73335 by mathmax by abdo last updated on 10/Nov/19
eplcit  f(x)=∫_0 ^1 ln(x+t+t^2 )dt      with x>(1/4)  2)calculate ∫_0 ^1 ln(t^2  +t +(√2))dt
eplcitf(x)=01ln(x+t+t2)dtwithx>142)calculate01ln(t2+t+2)dt
Commented by mathmax by abdo last updated on 10/Nov/19
1) we have f(x)=∫_0 ^1 ln(t^2  +t+x)dt  by parts we get  f(x)=[tln(t^2  +t+x)]_0 ^1  −∫_0 ^1 t×((2t+1)/(t^2  +t +x))dt  =ln(2+x)−∫_0 ^1 ((2t^2  +t)/(t^2  +t+x))dt  we have  ∫_0 ^1  ((2t^2  +t)/(t^2  +t +x))dt =∫_0 ^1   ((2(t^2  +t+x)−2t−2x+t)/(t^2  +t+x))dt  =∫_0 ^1 (2−((t+2x)/(t^2  +t+x)))dt =2 −∫_0 ^1   ((t+2x)/(t^2  +t+x))dt  =2−(1/2)∫_0 ^1  ((2t +4x+1−1)/(t^(2 ) +t+x))dt =2−(1/2)∫_0 ^1   ((2t+1)/(t^2  +t+x))dt−(1/2)∫_0 ^1 ((4x−1)/(t^2 +t+x))dt  =2−(1/2)[ln(t^2  +t+x)]_0 ^1  −((4x−1)/2)∫_0 ^1  (dt/(t^2  +t+x))  =2−(1/2)(ln(2+x)−ln(x))−((4x−1)/2)∫_0 ^1  (dt/(t^2  +t+x))  ∫_0 ^1  (dt/(t^2 +t+x)) =∫_0 ^1   (dt/(t^2  +2(t/2)+(1/4)+x−(1/4))) =∫_0 ^1  (dt/((t+(1/2))^2  +((4x−1)/4)))  (4x−1>0)  =_(t+(1/2)=((√(4x−1))/2)u)      (4/(4x−1)) ∫_(1/( (√(4x−1)))) ^(3/( (√(4x−1))))       (1/(1+u^2 )) ((√(4x−1))/2) du  =(2/( (√(4x−1)))){ arctan((3/( (√(4x−1)))))−arctan((1/( (√(4x−1)))))} ⇒  f(x)=ln(2+x)−2+(1/2)ln(((2+x)/x))+((4x−1)/2)×(2/( (√(4x−1)))){arctan((3/( (√(4x−1))))  −arctan((1/( (√(4x−1)))))}  f(x)=(3/2)ln(2+x)−(1/2)ln(x)−2 +(√(4x−1)){arctan((3/( (√(4x−1)))))−arctan((1/( (√(4x−1)))))}
1)wehavef(x)=01ln(t2+t+x)dtbypartswegetf(x)=[tln(t2+t+x)]0101t×2t+1t2+t+xdt=ln(2+x)012t2+tt2+t+xdtwehave012t2+tt2+t+xdt=012(t2+t+x)2t2x+tt2+t+xdt=01(2t+2xt2+t+x)dt=201t+2xt2+t+xdt=212012t+4x+11t2+t+xdt=212012t+1t2+t+xdt12014x1t2+t+xdt=212[ln(t2+t+x)]014x1201dtt2+t+x=212(ln(2+x)ln(x))4x1201dtt2+t+x01dtt2+t+x=01dtt2+2t2+14+x14=01dt(t+12)2+4x14(4x1>0)=t+12=4x12u44x114x134x111+u24x12du=24x1{arctan(34x1)arctan(14x1)}f(x)=ln(2+x)2+12ln(2+xx)+4x12×24x1{arctan(34x1arctan(14x1)}f(x)=32ln(2+x)12ln(x)2+4x1{arctan(34x1)arctan(14x1)}
Commented by mathmax by abdo last updated on 10/Nov/19
2) ∫_0 ^1 ln(t^2  +t+(√2))dt =f((√2))  =(3/2)ln(2+(√2))−(1/4)ln(2)−2+(√(4(√2)−1)){ arctan((3/( (√(4(√2)−1)))))−arctan((1/( (√(4(√2)−1)))))}
2)01ln(t2+t+2)dt=f(2)=32ln(2+2)14ln(2)2+421{arctan(3421)arctan(1421)}
Answered by mind is power last updated on 10/Nov/19
f(x)=∫_0 ^1 ln(x+t+t^2 )dt=ln(x+2)−ln(x)−∫(((1+2t)t)/(x+t+t^2 ))dt   {by part}  =ln(((x+2)/2))−∫_0 ^1 ((2t^2 +2t+2x−t−(1/2)+(1/2)−2x)/(t^2 +t+x))dt  =ln(((x+2)/x))−2∫1dt+∫((t+(1/2))/(t^2 +t+x))+(2x−(1/2))∫_0 ^1 (dt/((t+(1/2))^2 +((4x−1)/4)))  =ln(((x+2)/x))−2+(1/2)ln{(((x+2)/x))}+∫_0 ^1 (dt/((((2t)/( (√(4x−1))))+(1/( (√(4x−1)))))^2 +1))  =(3/2)ln(((x+2)/x))−2+((√(4x−1))/2).[arctan(((2t+1)/( (√(4x−1)))))]_0 ^1   =(3/2)ln(((x+2)/x))−2+((√(4x−1))/2).[arctab((3/( (√(4x−1)))))−arctan((1/( (√(4x−1)))))]  2)x=(√2)
f(x)=01ln(x+t+t2)dt=ln(x+2)ln(x)(1+2t)tx+t+t2dt{bypart}=ln(x+22)012t2+2t+2xt12+122xt2+t+xdt=ln(x+2x)21dt+t+12t2+t+x+(2x12)01dt(t+12)2+4x14=ln(x+2x)2+12ln{(x+2x)}+01dt(2t4x1+14x1)2+1=32ln(x+2x)2+4x12.[arctan(2t+14x1)]01=32ln(x+2x)2+4x12.[arctab(34x1)arctan(14x1)]2)x=2
Commented by mathmax by abdo last updated on 10/Nov/19
thanks sir.
thankssir.
Commented by mind is power last updated on 10/Nov/19
y′re welcom
yrewelcom

Leave a Reply

Your email address will not be published. Required fields are marked *