Question Number 73335 by mathmax by abdo last updated on 10/Nov/19

Commented by mathmax by abdo last updated on 10/Nov/19
![1) we have f(x)=∫_0 ^1 ln(t^2 +t+x)dt by parts we get f(x)=[tln(t^2 +t+x)]_0 ^1 −∫_0 ^1 t×((2t+1)/(t^2 +t +x))dt =ln(2+x)−∫_0 ^1 ((2t^2 +t)/(t^2 +t+x))dt we have ∫_0 ^1 ((2t^2 +t)/(t^2 +t +x))dt =∫_0 ^1 ((2(t^2 +t+x)−2t−2x+t)/(t^2 +t+x))dt =∫_0 ^1 (2−((t+2x)/(t^2 +t+x)))dt =2 −∫_0 ^1 ((t+2x)/(t^2 +t+x))dt =2−(1/2)∫_0 ^1 ((2t +4x+1−1)/(t^(2 ) +t+x))dt =2−(1/2)∫_0 ^1 ((2t+1)/(t^2 +t+x))dt−(1/2)∫_0 ^1 ((4x−1)/(t^2 +t+x))dt =2−(1/2)[ln(t^2 +t+x)]_0 ^1 −((4x−1)/2)∫_0 ^1 (dt/(t^2 +t+x)) =2−(1/2)(ln(2+x)−ln(x))−((4x−1)/2)∫_0 ^1 (dt/(t^2 +t+x)) ∫_0 ^1 (dt/(t^2 +t+x)) =∫_0 ^1 (dt/(t^2 +2(t/2)+(1/4)+x−(1/4))) =∫_0 ^1 (dt/((t+(1/2))^2 +((4x−1)/4))) (4x−1>0) =_(t+(1/2)=((√(4x−1))/2)u) (4/(4x−1)) ∫_(1/( (√(4x−1)))) ^(3/( (√(4x−1)))) (1/(1+u^2 )) ((√(4x−1))/2) du =(2/( (√(4x−1)))){ arctan((3/( (√(4x−1)))))−arctan((1/( (√(4x−1)))))} ⇒ f(x)=ln(2+x)−2+(1/2)ln(((2+x)/x))+((4x−1)/2)×(2/( (√(4x−1)))){arctan((3/( (√(4x−1)))) −arctan((1/( (√(4x−1)))))} f(x)=(3/2)ln(2+x)−(1/2)ln(x)−2 +(√(4x−1)){arctan((3/( (√(4x−1)))))−arctan((1/( (√(4x−1)))))}](https://www.tinkutara.com/question/Q73376.png)
Commented by mathmax by abdo last updated on 10/Nov/19

Answered by mind is power last updated on 10/Nov/19
![f(x)=∫_0 ^1 ln(x+t+t^2 )dt=ln(x+2)−ln(x)−∫(((1+2t)t)/(x+t+t^2 ))dt {by part} =ln(((x+2)/2))−∫_0 ^1 ((2t^2 +2t+2x−t−(1/2)+(1/2)−2x)/(t^2 +t+x))dt =ln(((x+2)/x))−2∫1dt+∫((t+(1/2))/(t^2 +t+x))+(2x−(1/2))∫_0 ^1 (dt/((t+(1/2))^2 +((4x−1)/4))) =ln(((x+2)/x))−2+(1/2)ln{(((x+2)/x))}+∫_0 ^1 (dt/((((2t)/( (√(4x−1))))+(1/( (√(4x−1)))))^2 +1)) =(3/2)ln(((x+2)/x))−2+((√(4x−1))/2).[arctan(((2t+1)/( (√(4x−1)))))]_0 ^1 =(3/2)ln(((x+2)/x))−2+((√(4x−1))/2).[arctab((3/( (√(4x−1)))))−arctan((1/( (√(4x−1)))))] 2)x=(√2)](https://www.tinkutara.com/question/Q73357.png)
Commented by mathmax by abdo last updated on 10/Nov/19

Commented by mind is power last updated on 10/Nov/19
