Menu Close

Evaluate-0-1-2-4x-2-1-x-2-dx-




Question Number 142886 by ZiYangLee last updated on 06/Jun/21
Evaluate ∫_0 ^( (1/2)) ((4x^2 )/( (√(1−x^2 )) )) dx
Evaluate0124x21x2dx
Answered by Ar Brandon last updated on 06/Jun/21
=∫_0 ^(π/6) 4sin^2 φdφ=2∫_0 ^(π/6) (1−cos2φ)dφ=2((π/6)−((√3)/4))
=0π64sin2ϕdϕ=20π6(1cos2ϕ)dϕ=2(π634)
Answered by mathmax by abdo last updated on 07/Jun/21
I=∫_0 ^(1/2)  ((4x^2 )/( (√(1−x^2 ))))dx ⇒I=−4 ∫_0 ^(1/2) ((1−x^2 −1)/( (√(1−x^2 ))))dx  =−4∫_0 ^(1/2) (√(1−x^2 ))dx+4∫_0 ^(1/2)  (dx/( (√(1−x^2 ))))  ∫_0 ^(1/2) (√(1−x^2 ))dx =_(x=sinθ)   ∫_0 ^(π/6) cos^2 θdθ =∫_0 ^(π/6)  ((1+cos(2θ))/2)dθ  =(π/(12)) +(1/4)[sin(2θ)]_0 ^(π/6)  =(π/(12))+(1/4)(((√3)/2)) =(π/(12))+((√3)/8)  ∫_0 ^(1/2)  (dx/( (√(1−x^2 ))))=[arcsinx]_0 ^(1/2)  =(π/6) ⇒  I=((2π)/3)−4((π/(12))+((√3)/8)) =((2π)/3)−(π/3)−((√3)/2)=(π/3)−((√3)/2)
I=0124x21x2dxI=40121x211x2dx=40121x2dx+4012dx1x20121x2dx=x=sinθ0π6cos2θdθ=0π61+cos(2θ)2dθ=π12+14[sin(2θ)]0π6=π12+14(32)=π12+38012dx1x2=[arcsinx]012=π6I=2π34(π12+38)=2π3π332=π332

Leave a Reply

Your email address will not be published. Required fields are marked *