Menu Close

Evaluate-0-1-tan-1-x-x-dx-




Question Number 12101 by Nayon last updated on 13/Apr/17
Evaluate ∫_0 ^1 ((tan^(−1) (x))/( x))dx
$${Evaluate}\:\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{tan}^{−\mathrm{1}} \left({x}\right)}{\:{x}}{dx} \\ $$
Answered by b.e.h.i.8.3.4.1.7@gmail.com last updated on 13/Apr/17
x=tgϕ⇒dx=(dϕ/(1+tg^2 ϕ)) (((x=1⇒ϕ=(π/4))),((x=0⇒ϕ=0)) )  I=∫((tg^(−1) (tgϕ))/(tgϕ)).(dϕ/(1+tg^2 ϕ))=∫((ϕdϕ)/(tgϕ(1+tg^2 ϕ)))  =(ϕ/(tgϕ))−∫(dϕ/(tgϕ))=(ϕ/(tgϕ))−∫((cosϕ)/(sinϕ))dϕ=  (ϕ/(tgϕ))−ln∣sinϕ∣+C.  I=(π/(4×1))−ln(((√2)/2))=(π/4)+(1/2)ln2  .■  (I=((tg^(−1) x)/x)−ln∣(x/( (√(1+x^2 ))))∣+C).
$${x}={tg}\varphi\Rightarrow{dx}=\frac{{d}\varphi}{\mathrm{1}+{tg}^{\mathrm{2}} \varphi}\begin{pmatrix}{{x}=\mathrm{1}\Rightarrow\varphi=\frac{\pi}{\mathrm{4}}}\\{{x}=\mathrm{0}\Rightarrow\varphi=\mathrm{0}}\end{pmatrix} \\ $$$${I}=\int\frac{{tg}^{−\mathrm{1}} \left({tg}\varphi\right)}{{tg}\varphi}.\frac{{d}\varphi}{\mathrm{1}+{tg}^{\mathrm{2}} \varphi}=\int\frac{\varphi{d}\varphi}{{tg}\varphi\left(\mathrm{1}+{tg}^{\mathrm{2}} \varphi\right)} \\ $$$$=\frac{\varphi}{{tg}\varphi}−\int\frac{{d}\varphi}{{tg}\varphi}=\frac{\varphi}{{tg}\varphi}−\int\frac{{cos}\varphi}{{sin}\varphi}{d}\varphi= \\ $$$$\frac{\varphi}{{tg}\varphi}−{ln}\mid{sin}\varphi\mid+{C}. \\ $$$${I}=\frac{\pi}{\mathrm{4}×\mathrm{1}}−{ln}\left(\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\right)=\frac{\pi}{\mathrm{4}}+\frac{\mathrm{1}}{\mathrm{2}}{ln}\mathrm{2}\:\:.\blacksquare \\ $$$$\left({I}=\frac{{tg}^{−\mathrm{1}} {x}}{{x}}−{ln}\mid\frac{{x}}{\:\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }}\mid+{C}\right). \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *