Menu Close

evaluate-0-2-x-2-dx-




Question Number 66561 by Rio Michael last updated on 17/Aug/19
evaluate     ∫_0 ^2 ∣ x+ 2∣ dx.
evaluate02x+2dx.
Commented by kaivan.ahmadi last updated on 17/Aug/19
0<x<2⇒x+2>0⇒∣x+2∣=x+2  ∫_0 ^2 (x+2)dx=(x^2 /2)+2x∣_0 ^2 =(2+4)−0=6
0<x<2x+2>0⇒∣x+2∣=x+202(x+2)dx=x22+2x02=(2+4)0=6
Commented by Rio Michael last updated on 17/Aug/19
sir i dont understand what you did above
siridontunderstandwhatyoudidabove
Answered by Tanmay chaudhury last updated on 17/Aug/19
∣x+2∣  =x+2   sinc here interval from  0 to 2  so x is positive  ∫_0 ^2 (x+2)dx  ∣(x^2 /2)+2x∣_0 ^2   =(4/2)+2×2  =6
x+2=x+2sinchereintervalfrom0to2soxispositive02(x+2)dxx22+2x02=42+2×2=6
Commented by Rio Michael last updated on 17/Aug/19
thanks so how do i solve this then  ∫_2 ^3  ∣ x^2  + x + 1∣ dx?
thankssohowdoisolvethisthen23x2+x+1dx?
Commented by mr W last updated on 17/Aug/19
∫_2 ^3 .... means the range for x is [2,3].  in the range 2≤x≤3 it′s clear that  x^2 +x+1>0, hence ∣x^2 +x+1∣=x^2 +x+1,  ∫_2 ^3  ∣ x^2  + x + 1∣ dx  =∫_2 ^3  (x^2  + x + 1)dx  =[(x^3 /3)+(x^2 /2)+x]_2 ^3   =[(3^3 /3)+(3^2 /2)+3]−[(2^3 /3)+(2^2 /2)+2]  =((27−8)/3)+((9−4)/2)+3−2  =((19)/3)+(5/2)+1  =((19×2+5×3+6)/6)  =((59)/6)
23.meanstherangeforxis[2,3].intherange2x3itsclearthatx2+x+1>0,hencex2+x+1∣=x2+x+1,23x2+x+1dx=23(x2+x+1)dx=[x33+x22+x]23=[333+322+3][233+222+2]=2783+942+32=193+52+1=19×2+5×3+66=596
Commented by Rio Michael last updated on 17/Aug/19
thank you
thankyou

Leave a Reply

Your email address will not be published. Required fields are marked *