Menu Close

Evaluate-0-dx-x-4-2x-2-cos-1-0-lt-lt-pi-




Question Number 2210 by Yozzi last updated on 08/Nov/15
Evaluate     ∫_0 ^∞ (dx/(x^4 +2x^2 cosα+1))  (0<α<π).
Evaluate0dxx4+2x2cosα+1(0<α<π).
Commented by 123456 last updated on 09/Nov/15
−(1/2)ıcosec α(((tan^(−1) (x/( (√e^(−ıα) ))))/( (√e^(−ıα) )))−((tan^(−1) (x/( (√e^(ıα) ))))/( (√e^(ıα) ))))  c.m
12ıcosecα(tan1xeıαeıαtan1xeıαeıα)c.m
Commented by prakash jain last updated on 09/Nov/15
(1/(x^4 +2x^2 cosα+cos^2 α+1−cos^2 α))  =(1/((x^2 +cosα)^2 +sin^2 α))  =(1/((x^2 +cos α−isin α)(x^2 +cos α+isin α)))  =(1/((x^2 +e^(−iα) )(x^2 +e^(iα) )))
1x4+2x2cosα+cos2α+1cos2α=1(x2+cosα)2+sin2α=1(x2+cosαisinα)(x2+cosα+isinα)=1(x2+eiα)(x2+eiα)
Answered by prakash jain last updated on 09/Nov/15
(1/((x^2 +e^(iα) )(x^2 +e^(−iα) )))  =(1/((e^(iα) −e^(−iα) )))((1/(x^2 +e^(−iα) ))−(1/(x^2 +e^(iα) )))  Integrating ∫(1/(x^2 +a^2 ))=(1/a)tan^(−1) (x/a)  =(1/(2sin iα))[(1/( (√e^(−iα) )))tan^(−1) (x/( (√e^(−iα) )))−(1/( (√e^(iα) )))tan^(−1) (x/( (√e^(iα) )))]
1(x2+eiα)(x2+eiα)=1(eiαeiα)(1x2+eiα1x2+eiα)Integrating1x2+a2=1atan1xa=12siniα[1eiαtan1xeiα1eiαtan1xeiα]

Leave a Reply

Your email address will not be published. Required fields are marked *