Evaluate-0-dx-x-4-2x-2-cos-1-0-lt-lt-pi- Tinku Tara June 3, 2023 Integration 0 Comments FacebookTweetPin Question Number 2210 by Yozzi last updated on 08/Nov/15 Evaluate∫0∞dxx4+2x2cosα+1(0<α<π). Commented by 123456 last updated on 09/Nov/15 −12ıcosecα(tan−1xe−ıαe−ıα−tan−1xeıαeıα)c.m Commented by prakash jain last updated on 09/Nov/15 1x4+2x2cosα+cos2α+1−cos2α=1(x2+cosα)2+sin2α=1(x2+cosα−isinα)(x2+cosα+isinα)=1(x2+e−iα)(x2+eiα) Answered by prakash jain last updated on 09/Nov/15 1(x2+eiα)(x2+e−iα)=1(eiα−e−iα)(1x2+e−iα−1x2+eiα)Integrating∫1x2+a2=1atan−1xa=12siniα[1e−iαtan−1xe−iα−1eiαtan−1xeiα] Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: let-f-x-0-sin-t-2-x-2-t-2-2-dt-with-x-gt-0-1-determine-a-explicit-form-for-f-x-2-find-also-g-x-0-sin-t-2-x-2-t-2-3-dt-3-give-f-n-x-at-form-of-intNext Next post: dt-1-kt-1-t-2-0-lt-k-lt-1- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.