Menu Close

Evaluate-0-pi-4-ln-tan-x-sin-pi-e-2x-sin-pi-e-x-cos-pi-e-x-2-dx-




Question Number 143086 by mnjuly1970 last updated on 09/Jun/21
    Evaluate ::             Ω:=∫_0 ^( (π/4)) ((ln(tan(x)).sin^π^e  (2x))/((sin^π^e  (x)+cos^π^e  (x))^2 ))dx
Evaluate::Ω:=0π4ln(tan(x)).sinπe(2x)(sinπe(x)+cosπe(x))2dx
Answered by alexperez2703a last updated on 10/Jun/21
    Evaluate ::            ∫_0 ^3 (4−x)(3−x)dx=
Evaluate::03(4x)(3x)dx=
Answered by mnjuly1970 last updated on 17/Jun/21
     Ω(n):= ∫_0 ^( (π/4)) ((ln(cot(x)).sin^(n−1) (2x))/((sin^n (x)+cos^n (x))^2 ))dx   =2^(n−2) ∫_0 ^( (π/4)) ((ln(cot(x)).sin^(n−1) (x).cos^(n−1) (x))/(sin^(2n) (x)(1+cot^n (x))^2 ))dx   =(2^(n−1) /n^2 )∫_0 ^( (π/4)) ((ln(cot^n (x)).sin^(n−1) (x)(n).cos^(n−1) (x))/(sin^2 (x).sin^(n−1) (x)sin^(n−1) (x)(1+cot^n (x))^2 ))dx    =(2^(n−1) /n^2 )∫_0 ^( (π/4)) ((ln(cot^n (x)).ncot^(n−1) (x))/(sin^2 (x)(1+cot^n (x))^2 ))dx    =^(cot^n (x)=y)  (2^(n−1) /n^2 )∫_1 ^( ∞) ((ln(y)dy)/((1+y)^2 ))         =(2^(n−1) /n^2 ) {[((−1)/(1+y))ln(y)]_1 ^( ∞) +∫_1 ^^∞  (1/(y(1+y)))dy  dy}  =(2^(n−1) /n^2 ){ln((y/(1+y)))}_1 ^∞ =(2^(n−1) /n^2 )ln(2)    n:=π^e +1 ........                  ....Ω =((2^( π^( e) ) . ln(2))/((π^( e) +1)^2 )) .....
Ω(n):=0π4ln(cot(x)).sinn1(2x)(sinn(x)+cosn(x))2dx=2n20π4ln(cot(x)).sinn1(x).cosn1(x)sin2n(x)(1+cotn(x))2dx=2n1n20π4ln(cotn(x)).sinn1(x)(n).cosn1(x)sin2(x).sinn1(x)sinn1(x)(1+cotn(x))2dx=2n1n20π4ln(cotn(x)).ncotn1(x)sin2(x)(1+cotn(x))2dx=cotn(x)=y2n1n21ln(y)dy(1+y)2=2n1n2{[11+yln(y)]1+11y(1+y)dydy}=2n1n2{ln(y1+y)}1=2n1n2ln(2)n:=πe+1...Ω=2πe.ln(2)(πe+1)2..

Leave a Reply

Your email address will not be published. Required fields are marked *