Evaluate-0-sinx-x-a-dx- Tinku Tara June 3, 2023 Integration 0 Comments FacebookTweetPin Question Number 134474 by rs4089 last updated on 04/Mar/21 Evaluate∫0∞sinxxadx Answered by Dwaipayan Shikari last updated on 04/Mar/21 ∫0∞sinxxadx=1Γ(a)∫0∞∫0∞ta−1e−xtsinxdtdx=12iΓ(a)∫0∞∫0∞ta−1e−x(t−i)−ta−1e−x(t+i)dxdt=12iΓ(a)∫0∞ta−1t−i−ta−1t+idt=1Γ(a)∫0∞ta−1t2+1dt=12Γ(a)∫0∞ua2−1u+1dut2=u=12Γ(a).πsin(π2a) Answered by mnjuly1970 last updated on 04/Mar/21 ϕ=−im∫0∞e−ixxadx=−im∫0∞e−ixx−adx=−im(L[x−a])∣s=i=−im{Γ(1−a)s1−a∣s=i}=−im{Γ(a)Γ(1−a)Γ(a)eiπ2(1−a)}=−im{πΓ(a)sin(πa)(sin(π2a)+icos(π2a))=−im{π(sin(π2a)−icos(π2a))Γ(a)sin(πa)}=πcos(π2a)2Γ(a)sin(π2a)cos(π2a)=π2Γ(a)sin(π2a)… Answered by mathmax by abdo last updated on 27/Mar/21 Φ=∫0∞sinxxadx=−Im(∫0∞x−ae−ixdx)wehave∫0∞x−ae−ixdx=ix=t→x=−it∫0∞(−it)−ae−t(−i)dt=(−i)−a+1∫0∞t1−a−1e−tdt=(e−iπ2)(1−a)Γ(1−a)=eiπ2(a−1).Γ(1−a)=Γ(1−a){cos(π(a−1)2)+isin(π(a−1)2)}⇒Φ=−Γ(1−a)sin(π(a−1)2)=sin(π2(1−a))×Γ(1−a) Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Find-all-values-for-x-x-2-7x-11-x-2-13x-42-1-Easy-Next Next post: If-1-cos-x-cos-2x-cos-3x-cos-4x-3-for-0-lt-x-pi-2-find-the-value-of-sin-x-sin-2x-sin-3x- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.