Menu Close

Evaluate-0-sinx-x-a-dx-




Question Number 134474 by rs4089 last updated on 04/Mar/21
Evaluate    ∫_0 ^∞ ((sinx)/x^a )dx
Evaluate0sinxxadx
Answered by Dwaipayan Shikari last updated on 04/Mar/21
∫_0 ^∞ ((sinx)/x^a )dx  =(1/(Γ(a)))∫_0 ^∞ ∫_0 ^∞ t^(a−1) e^(−xt) sinxdtdx  =(1/(2iΓ(a)))∫_0 ^∞ ∫_0 ^∞ t^(a−1) e^(−x(t−i)) −t^(a−1) e^(−x(t+i)) dx dt  =(1/(2iΓ(a)))∫_0 ^∞ (t^(a−1) /(t−i))−(t^(a−1) /(t+i))dt  =(1/(Γ(a)))∫_0 ^∞ (t^(a−1) /(t^2 +1))dt  =(1/(2Γ(a)))∫_0 ^∞ (u^((a/2)−1) /(u+1))du      t^2 =u  =(1/(2Γ(a))).(π/(sin((π/2)a)))
0sinxxadx=1Γ(a)00ta1extsinxdtdx=12iΓ(a)00ta1ex(ti)ta1ex(t+i)dxdt=12iΓ(a)0ta1tita1t+idt=1Γ(a)0ta1t2+1dt=12Γ(a)0ua21u+1dut2=u=12Γ(a).πsin(π2a)
Answered by mnjuly1970 last updated on 04/Mar/21
   𝛗=−im∫_0 ^( ∞) (e^(−ix) /x^a )dx=−im∫_(0 ) ^( ∞) e^(−ix) x^(−a) dx      =−im(L [x^(−a) ])∣_(s=i)        =−im{((Γ(1−a))/s^(1−a) )∣_(s=i) }      =−im{((Γ(a)Γ(1−a))/(Γ(a)e^(((iπ)/2)(1−a)) ))}            =−im{(π/(Γ(a)sin(πa)(sin((π/2)a)+icos((π/2)a))))  =−im{((π(sin((π/2)a)−icos((π/2)a)))/(Γ(a)sin(πa)))}  =((πcos((π/2)a))/(2Γ(a)sin((π/2)a)cos((π/2)a)))=(π/(2Γ(a)sin((π/2)a))) ...
ϕ=im0eixxadx=im0eixxadx=im(L[xa])s=i=im{Γ(1a)s1as=i}=im{Γ(a)Γ(1a)Γ(a)eiπ2(1a)}=im{πΓ(a)sin(πa)(sin(π2a)+icos(π2a))=im{π(sin(π2a)icos(π2a))Γ(a)sin(πa)}=πcos(π2a)2Γ(a)sin(π2a)cos(π2a)=π2Γ(a)sin(π2a)
Answered by mathmax by abdo last updated on 27/Mar/21
Φ=∫_0 ^∞  ((sinx)/x^a )dx =−Im(∫_0 ^∞  x^(−a)  e^(−ix)  dx) we have  ∫_0 ^∞  x^(−a)  e^(−ix)  dx  =_(ix=t→x=−it)    ∫_0 ^∞   (−it)^(−a)  e^(−t)  (−i)dt  =(−i)^(−a+1)  ∫_0 ^∞  t^(1−a−1)  e^(−t)  dt =(e^(−((iπ)/2)) )^((1−a))  Γ(1−a)  =e^(i(π/2)(a−1))  .Γ(1−a) =Γ(1−a) {cos(((π(a−1))/2))+isin(((π(a−1))/2))} ⇒  Φ=−Γ(1−a)sin(((π(a−1))/2)) =sin((π/2)(1−a))×Γ(1−a)
Φ=0sinxxadx=Im(0xaeixdx)wehave0xaeixdx=ix=tx=it0(it)aet(i)dt=(i)a+10t1a1etdt=(eiπ2)(1a)Γ(1a)=eiπ2(a1).Γ(1a)=Γ(1a){cos(π(a1)2)+isin(π(a1)2)}Φ=Γ(1a)sin(π(a1)2)=sin(π2(1a))×Γ(1a)

Leave a Reply

Your email address will not be published. Required fields are marked *