Menu Close

evaluate-0-xe-x-2-4-ln-x-dx-m-pi-find-m-




Question Number 140401 by mnjuly1970 last updated on 07/May/21
          evaluate ::       Φ:=∫_0 ^( ∞) xe^(−(x^2 /4)) ln(x)dx = m.( π γ)        find   ”  m  ” ......
evaluate::Φ:=0xex24ln(x)dx=m.(πγ)findm
Answered by qaz last updated on 07/May/21
φ(a)=∫_0 ^∞ x^a e^(−(x^2 /4)) dx=((Γ(((a+1)/2)))/(2((1/4))^((a+1)/2) ))=2^a Γ(((a+1)/2))  Φ=φ(1)′={2^a ln2Γ(((a+1)/2))+2^a Γ(((a+1)/2))ψ(((a+1)/2))∙(1/2)}_(a=1)   =2ln2+ψ(1)  ⇒m=((2ln2−γ)/(πγ))
ϕ(a)=0xaex24dx=Γ(a+12)2(14)a+12=2aΓ(a+12)Φ=ϕ(1)={2aln2Γ(a+12)+2aΓ(a+12)ψ(a+12)12}a=1=2ln2+ψ(1)m=2ln2γπγ
Commented by mnjuly1970 last updated on 07/May/21
thanks alot mr qaz..
thanksalotmrqaz..
Answered by mnjuly1970 last updated on 07/May/21
  ((x/2))^2 =y ⇒x=2(√y)      Φ=∫_0 ^( ∞) 2(√y) e^(−y) ln(2(√y) )(dy/( (√y)))           =2∫_0 ^( ∞) e^(−y) ln(2)dy+∫_0 ^( ∞) e^(−y) ln(y)dy    = ln(4)−γ       ln(4)−γ=m(πγ)        m=((ln(4)−γ)/(πγ))
(x2)2=yx=2yΦ=02yeyln(2y)dyy=20eyln(2)dy+0eyln(y)dy=ln(4)γln(4)γ=m(πγ)m=ln(4)γπγ
Commented by qaz last updated on 07/May/21
i edited  again....
ieditedagain.
Commented by mnjuly1970 last updated on 07/May/21
 grateful ....
grateful.

Leave a Reply

Your email address will not be published. Required fields are marked *