Menu Close

Evaluate-1-0-sin-x-2-dx-2-0-cos-x-2-dx-3-0-tan-x-2-dx-




Question Number 689 by 112358 last updated on 25/Feb/15
Evaluate   (1)               ∫_0 ^∞ sin(x^2 )dx,  (2)               ∫_0 ^∞ cos(x^2 )dx,  (3)               ∫_0 ^∞ tan(x^2 )dx.
$${Evaluate}\: \\ $$$$\left(\mathrm{1}\right)\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\int_{\mathrm{0}} ^{\infty} {sin}\left({x}^{\mathrm{2}} \right){dx}, \\ $$$$\left(\mathrm{2}\right)\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\int_{\mathrm{0}} ^{\infty} {cos}\left({x}^{\mathrm{2}} \right){dx}, \\ $$$$\left(\mathrm{3}\right)\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\int_{\mathrm{0}} ^{\infty} {tan}\left({x}^{\mathrm{2}} \right){dx}. \\ $$
Commented by 123456 last updated on 25/Feb/15
 ∫_Γ e^(ız^2 ) dz
$$\:\underset{\Gamma} {\int}{e}^{\imath{z}^{\mathrm{2}} } {dz} \\ $$
Answered by prakash jain last updated on 25/Feb/15
We know that  ∫_0 ^∞ e^(−x^2 ) dx=((√π)/2)  sin (x^2 )=−Im (e^(−ix^2 ) )  cos (x^2 )=Re (e^(−ix^2 ) )  ∫_0 ^∞ e^(−ix^2 ) dx=(1/( (√i)))∙((√π)/2)=((1/( (√2))) −(i/( (√2))))∙((√π)/2)  ∫_0 ^∞ sin (x^2 )=((√π)/(2(√2)))  ∫_0 ^∞ cos (x^2 )=((√π)/(2(√2)))
$$\mathrm{We}\:\mathrm{know}\:\mathrm{that} \\ $$$$\int_{\mathrm{0}} ^{\infty} {e}^{−{x}^{\mathrm{2}} } {dx}=\frac{\sqrt{\pi}}{\mathrm{2}} \\ $$$$\mathrm{sin}\:\left({x}^{\mathrm{2}} \right)=−\mathrm{Im}\:\left({e}^{−{ix}^{\mathrm{2}} } \right) \\ $$$$\mathrm{cos}\:\left({x}^{\mathrm{2}} \right)=\mathrm{Re}\:\left({e}^{−{ix}^{\mathrm{2}} } \right) \\ $$$$\int_{\mathrm{0}} ^{\infty} {e}^{−{ix}^{\mathrm{2}} } {dx}=\frac{\mathrm{1}}{\:\sqrt{{i}}}\centerdot\frac{\sqrt{\pi}}{\mathrm{2}}=\left(\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\:−\frac{{i}}{\:\sqrt{\mathrm{2}}}\right)\centerdot\frac{\sqrt{\pi}}{\mathrm{2}} \\ $$$$\int_{\mathrm{0}} ^{\infty} \mathrm{sin}\:\left({x}^{\mathrm{2}} \right)=\frac{\sqrt{\pi}}{\mathrm{2}\sqrt{\mathrm{2}}} \\ $$$$\int_{\mathrm{0}} ^{\infty} \mathrm{cos}\:\left({x}^{\mathrm{2}} \right)=\frac{\sqrt{\pi}}{\mathrm{2}\sqrt{\mathrm{2}}} \\ $$
Commented by prakash jain last updated on 25/Feb/15
∫_0 ^∞ tan (x^2 ) dx does not coverge.
$$\int_{\mathrm{0}} ^{\infty} \mathrm{tan}\:\left({x}^{\mathrm{2}} \right)\:{dx}\:\mathrm{does}\:\mathrm{not}\:\mathrm{coverge}.\: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *