Question Number 73428 by Learner-123 last updated on 12/Nov/19
$${Evaluate}\:: \\ $$$$\left.\mathrm{1}\right)\:\int_{−\mathrm{2}} ^{\:\mathrm{2}} \int_{−\sqrt{\mathrm{4}−{x}^{\mathrm{2}} }} ^{\:\sqrt{\mathrm{4}−{x}^{\mathrm{2}} }} \:\left(\mathrm{3}−{x}\right){dydx}\:. \\ $$$$\left({after}\:{changing}\:{the}\:{integral}\:{to}\:{polar}\:{form}\right). \\ $$$$ \\ $$$$\left.\mathrm{2}\right)\:\int_{\mathrm{0}} ^{\mathrm{4}} \int_{\mathrm{0}} ^{\mathrm{4}−{x}} \int_{\mathrm{0}} ^{\:\mathrm{4}−\frac{{y}^{\mathrm{2}} }{\mathrm{4}}} \:{dzdydx}\:. \\ $$
Commented by mathmax by abdo last updated on 12/Nov/19
$$\left.\mathrm{1}\right)\:{I}\:=\int_{−\mathrm{2}} ^{\mathrm{2}} \left(\int_{−\sqrt{\mathrm{4}−{x}^{\mathrm{2}} }} ^{\sqrt{\mathrm{4}−{x}^{\mathrm{2}} }} {dy}\right)\left(\mathrm{3}−{x}\right){dx}\:=\int_{−\mathrm{2}} ^{\mathrm{2}} \mathrm{2}\sqrt{\mathrm{4}−{x}^{\mathrm{2}} }\left(\mathrm{3}−{x}\right){dx} \\ $$$$=\mathrm{2}\:\int_{−\mathrm{2}} ^{\mathrm{2}} \left(\mathrm{3}−{x}\right)\sqrt{\mathrm{4}−{x}^{\mathrm{2}} }\:{dx}\:\:=_{{x}=\mathrm{2}{sin}\theta} \:\:\:\mathrm{2}\:\int_{−\frac{\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} \left(\mathrm{3}−\mathrm{2}{sin}\theta\right)\mathrm{2}{cos}\theta\:\left(\mathrm{2}{cos}\theta\right){d}\theta \\ $$$$=\mathrm{8}\:\int_{−\frac{\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} \:\left(\mathrm{3}−\mathrm{2}{sin}\theta\right)\:{cos}^{\mathrm{2}} \theta\:{d}\theta\:=\mathrm{24}\:\int_{−\frac{\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} {cos}^{\mathrm{2}} \theta\:{d}\theta\:−\mathrm{16}\:\int_{−\frac{\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} \:{sin}\theta\:{cos}^{\mathrm{2}} \theta\:{d}\theta \\ $$$${we}\:{have}\:\int_{−\frac{\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} \:{sin}\theta\:{cos}^{\mathrm{2}} \theta\:{d}\theta\:=\left[−\frac{\mathrm{1}}{\mathrm{3}}{cos}^{\mathrm{3}} \theta\right]_{−\frac{\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} =\mathrm{0} \\ $$$$\int_{−\frac{\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} \:{cos}^{\mathrm{2}} \theta\:{d}\theta\:=\mathrm{2}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\frac{\mathrm{1}+{cos}\left(\mathrm{2}\theta\right)}{\mathrm{2}}{d}\theta\:=\frac{\pi}{\mathrm{2}}\:+\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {cos}\left(\mathrm{2}\theta\right){d}\theta \\ $$$$=\frac{\pi}{\mathrm{2}}\:+\left[\frac{\mathrm{1}}{\mathrm{2}}{sin}\left(\mathrm{2}\theta\right)\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:=\frac{\pi}{\mathrm{2}}\:+\mathrm{0}\:=\frac{\pi}{\mathrm{2}}\:\Rightarrow{I}\:=\mathrm{24}×\frac{\pi}{\mathrm{2}}\:\Rightarrow{I}=\mathrm{12}\pi \\ $$
Commented by Learner-123 last updated on 12/Nov/19
$${thnks}\:{sir}. \\ $$
Answered by Henri Boucatchou last updated on 12/Nov/19
$$\left.\mathrm{1}\right)\:\:{I}\:=\int_{−\mathrm{2}} ^{\:\mathrm{2}} \mathrm{2}\left(\mathrm{3}−{x}\right)\sqrt{\mathrm{4}−{x}^{\mathrm{2}} }\:{dx} \\ $$$$\:\:\:{x}=\mathrm{2}{cos}\theta,\:\:−\mathrm{1}\leqslant{cos}\theta\leqslant\mathrm{1},\:\:{dx}=−\mathrm{2}{sin}\theta{d}\theta \\ $$$$\:\:\:{I}\:=\:\mathrm{4}\int_{−\pi} ^{\:\mathrm{0}} \left(\mathrm{3}−\mathrm{2}{cos}\theta\right)\mid{sin}\theta\mid\left(−\mathrm{2}{sin}\theta\right){d}\theta \\ $$$$\:\:\:\:\:\:\:=\mathrm{8}\left[\int_{−\pi} ^{\:\mathrm{0}} \left(\mathrm{3}−\mathrm{2}{cos}\theta\right){sin}^{\mathrm{2}} \theta{d}\theta\right] \\ $$$$\:\:\:\:\:\:\:=\mathrm{8}\left[\mathrm{3}\int_{−\pi} ^{\:\mathrm{0}} {sin}^{\mathrm{2}} \theta{d}\theta\:−\:\mathrm{2}\int_{−\pi} ^{\:\mathrm{0}} {cos}\theta{sin}^{\mathrm{2}} \theta{d}\theta\right] \\ $$$$\:\:\:\:\:\:\:=\mathrm{8}\left[\frac{\mathrm{3}}{\mathrm{2}}\int_{−\pi} ^{\:\mathrm{0}} \left(\mathrm{1}−{cos}\mathrm{2}\theta\right){d}\theta\:−\:\mathrm{2}.\mathrm{0}\right] \\ $$$$\:\:\:\:\:\:\:=\mathrm{8}.\frac{\mathrm{3}}{\mathrm{2}}\left[\theta−\frac{\mathrm{1}}{\mathrm{2}}{sin}\mathrm{2}\theta\right]_{−\pi} ^{\mathrm{0}} \\ $$$$\:\:\:\:\:\:\:\:=\:\mathrm{12}\pi \\ $$$$−−−−−−−−−−−−−−− \\ $$$$\:\:\:\int_{\mathrm{0}} ^{\:\mathrm{4}} \int_{\mathrm{0}} ^{\:\mathrm{4}−{x}} \int_{\mathrm{0}} ^{\:\mathrm{4}−{y}^{\mathrm{2}} /\mathrm{4}} {dzdydx}= \\ $$$$\:\:\int_{\mathrm{0}} ^{\:\mathrm{4}} \int_{\mathrm{0}} ^{\:\mathrm{4}−{x}} \left(\mathrm{4}−\frac{{y}^{\mathrm{2}} }{\mathrm{4}}\right){dydx}\:= \\ $$$$\:\:\int_{\mathrm{0}} ^{\:\mathrm{4}} \left[\mathrm{4}{y}−\frac{{y}^{\mathrm{3}} }{\mathrm{12}}\right]_{\mathrm{0}} ^{\mathrm{4}−{x}} {dx}\:= \\ $$$$\:\:\int_{\mathrm{0}} ^{\:\mathrm{4}} \left(\mathrm{4}\left(\mathrm{4}−{x}\right)−\frac{\mathrm{1}}{\mathrm{12}}\left(\mathrm{4}−{x}\right)^{\mathrm{3}} \right){dx}\:= \\ $$$$\left.\:\:\mathrm{4}\left({x}−\frac{\mathrm{1}}{\mathrm{2}}{x}^{\mathrm{2}} \right)+\frac{\mathrm{1}}{\mathrm{12}.\mathrm{4}}\left(\mathrm{4}−{x}\right)^{\mathrm{4}} \right]_{\mathrm{0}} ^{\mathrm{4}} \:= \\ $$$$\:\:\mathrm{4}\left(\mathrm{4}−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{4}^{\mathrm{2}} \right)−\frac{\mathrm{1}}{\mathrm{12}}\:= \\ $$$$\:\:\:−\mathrm{16}−\frac{\mathrm{1}}{\mathrm{12}}\:= \\ $$$$\:\:−\frac{\mathrm{193}}{\mathrm{12}} \\ $$$$ \\ $$$$\:\:\boldsymbol{{PLEASE}}\:\:\boldsymbol{{CHECK}}\:\:\boldsymbol{{IF}}\:\:\boldsymbol{{THERE}}'\boldsymbol{{S}}\:\:\boldsymbol{{NO}}\:\:\boldsymbol{{ERROR}} \\ $$$$ \\ $$
Commented by Learner-123 last updated on 12/Nov/19
$${ma}'{am},\:{there}\:{is}\:{slight}\:{mistake}\:{in}\:\mathrm{4}{th}\:{last} \\ $$$${line}. \\ $$