Question Number 73428 by Learner-123 last updated on 12/Nov/19

Commented by mathmax by abdo last updated on 12/Nov/19
![1) I =∫_(−2) ^2 (∫_(−(√(4−x^2 ))) ^(√(4−x^2 )) dy)(3−x)dx =∫_(−2) ^2 2(√(4−x^2 ))(3−x)dx =2 ∫_(−2) ^2 (3−x)(√(4−x^2 )) dx =_(x=2sinθ) 2 ∫_(−(π/2)) ^(π/2) (3−2sinθ)2cosθ (2cosθ)dθ =8 ∫_(−(π/2)) ^(π/2) (3−2sinθ) cos^2 θ dθ =24 ∫_(−(π/2)) ^(π/2) cos^2 θ dθ −16 ∫_(−(π/2)) ^(π/2) sinθ cos^2 θ dθ we have ∫_(−(π/2)) ^(π/2) sinθ cos^2 θ dθ =[−(1/3)cos^3 θ]_(−(π/2)) ^(π/2) =0 ∫_(−(π/2)) ^(π/2) cos^2 θ dθ =2 ∫_0 ^(π/2) ((1+cos(2θ))/2)dθ =(π/2) +∫_0 ^(π/2) cos(2θ)dθ =(π/2) +[(1/2)sin(2θ)]_0 ^(π/2) =(π/2) +0 =(π/2) ⇒I =24×(π/2) ⇒I=12π](https://www.tinkutara.com/question/Q73443.png)
Commented by Learner-123 last updated on 12/Nov/19

Answered by Henri Boucatchou last updated on 12/Nov/19
![1) I =∫_(−2) ^( 2) 2(3−x)(√(4−x^2 )) dx x=2cosθ, −1≤cosθ≤1, dx=−2sinθdθ I = 4∫_(−π) ^( 0) (3−2cosθ)∣sinθ∣(−2sinθ)dθ =8[∫_(−π) ^( 0) (3−2cosθ)sin^2 θdθ] =8[3∫_(−π) ^( 0) sin^2 θdθ − 2∫_(−π) ^( 0) cosθsin^2 θdθ] =8[(3/2)∫_(−π) ^( 0) (1−cos2θ)dθ − 2.0] =8.(3/2)[θ−(1/2)sin2θ]_(−π) ^0 = 12π −−−−−−−−−−−−−−− ∫_0 ^( 4) ∫_0 ^( 4−x) ∫_0 ^( 4−y^2 /4) dzdydx= ∫_0 ^( 4) ∫_0 ^( 4−x) (4−(y^2 /4))dydx = ∫_0 ^( 4) [4y−(y^3 /(12))]_0 ^(4−x) dx = ∫_0 ^( 4) (4(4−x)−(1/(12))(4−x)^3 )dx = 4(x−(1/2)x^2 )+(1/(12.4))(4−x)^4 ]_0 ^4 = 4(4−(1/2)4^2 )−(1/(12)) = −16−(1/(12)) = −((193)/(12)) PLEASE CHECK IF THERE′S NO ERROR](https://www.tinkutara.com/question/Q73436.png)
Commented by Learner-123 last updated on 12/Nov/19
