Menu Close

evaluate-1-4-sinh-1-x-dx-and-1-1-2-tanh-1-x-dx-




Question Number 78074 by Rio Michael last updated on 14/Jan/20
evaluate ∫_1 ^4 sinh^(−1) x dx  and ∫_1 ^(1/2) tanh^(−1) x dx
$${evaluate}\:\int_{\mathrm{1}} ^{\mathrm{4}} \mathrm{sinh}\:^{−\mathrm{1}} {x}\:{dx}\:\:{and}\:\underset{\mathrm{1}} {\overset{\frac{\mathrm{1}}{\mathrm{2}}} {\int}}\mathrm{tanh}\:^{−\mathrm{1}} {x}\:{dx} \\ $$
Answered by mr W last updated on 14/Jan/20
∫sinh^(−1)  x dx  =∫ln (x+(√(1+x^2 ))) dx  =xln (x+(√(1+x^2 )))−∫((x(1+(x/( (√(1+x^2 ))))))/(x+(√(1+x^2 )))) dx  =xln (x+(√(1+x^2 )))−∫(x/( (√(1+x^2 )))) dx  =xln (x+(√(1+x^2 )))−∫(1/(2(√(1+x^2 )))) d(1+x^2 )  =xln (x+(√(1+x^2 )))−(√(1+x^2 ))+C    ∫_1 ^4 sinh^(−1)  x dx  =[xln (x+(√(1+x^2 )))−(√(1+x^2 ))]_1 ^4   =4ln (4+(√(17)))−ln (1+(√2))−(√(17))+(√2)
$$\int\mathrm{sinh}^{−\mathrm{1}} \:{x}\:{dx} \\ $$$$=\int\mathrm{ln}\:\left({x}+\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }\right)\:{dx} \\ $$$$={x}\mathrm{ln}\:\left({x}+\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }\right)−\int\frac{{x}\left(\mathrm{1}+\frac{{x}}{\:\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }}\right)}{{x}+\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }}\:{dx} \\ $$$$={x}\mathrm{ln}\:\left({x}+\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }\right)−\int\frac{{x}}{\:\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }}\:{dx} \\ $$$$={x}\mathrm{ln}\:\left({x}+\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }\right)−\int\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }}\:{d}\left(\mathrm{1}+{x}^{\mathrm{2}} \right) \\ $$$$={x}\mathrm{ln}\:\left({x}+\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }\right)−\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }+{C} \\ $$$$ \\ $$$$\int_{\mathrm{1}} ^{\mathrm{4}} \mathrm{sinh}^{−\mathrm{1}} \:{x}\:{dx} \\ $$$$=\left[{x}\mathrm{ln}\:\left({x}+\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }\right)−\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }\right]_{\mathrm{1}} ^{\mathrm{4}} \\ $$$$=\mathrm{4ln}\:\left(\mathrm{4}+\sqrt{\mathrm{17}}\right)−\mathrm{ln}\:\left(\mathrm{1}+\sqrt{\mathrm{2}}\right)−\sqrt{\mathrm{17}}+\sqrt{\mathrm{2}} \\ $$
Answered by mr W last updated on 14/Jan/20
∫tanh^(−1)  x dx  =(1/2)∫ln ((1+x)/(1−x)) dx  =(1/2)[xln ((1−x)/(1+x))+∫((2x)/(1−x^2 )) dx]  =(1/2)[xln ((1−x)/(1+x))−∫(1/(1−x^2 )) d(1−x^2 )]  =(1/2)[xln ((1−x)/(1+x))−ln (1−x^2 )]+C
$$\int\mathrm{tanh}^{−\mathrm{1}} \:{x}\:{dx} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int\mathrm{ln}\:\frac{\mathrm{1}+{x}}{\mathrm{1}−{x}}\:{dx} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left[{x}\mathrm{ln}\:\frac{\mathrm{1}−{x}}{\mathrm{1}+{x}}+\int\frac{\mathrm{2}{x}}{\mathrm{1}−{x}^{\mathrm{2}} }\:{dx}\right] \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left[{x}\mathrm{ln}\:\frac{\mathrm{1}−{x}}{\mathrm{1}+{x}}−\int\frac{\mathrm{1}}{\mathrm{1}−{x}^{\mathrm{2}} }\:{d}\left(\mathrm{1}−{x}^{\mathrm{2}} \right)\right] \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left[{x}\mathrm{ln}\:\frac{\mathrm{1}−{x}}{\mathrm{1}+{x}}−\mathrm{ln}\:\left(\mathrm{1}−{x}^{\mathrm{2}} \right)\right]+{C} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *