Question Number 53 by surabhi last updated on 25/Jan/15
$$\mathrm{Evaluate}\:\int_{\mathrm{1}} ^{\mathrm{4}} \frac{\left({x}^{\mathrm{2}} +{x}\right)}{\:\sqrt{\mathrm{2}{x}+\mathrm{1}}}{dx} \\ $$
Answered by surabhi last updated on 04/Nov/14
$$\left[\left({x}^{\mathrm{2}} +{x}\right)\centerdot\sqrt{\mathrm{2}{x}+\mathrm{1}}\right]_{\mathrm{2}} ^{\mathrm{4}} −\int_{\mathrm{2}} ^{\mathrm{4}} \left(\mathrm{2}{x}+\mathrm{1}\right)\centerdot\sqrt{\mathrm{2}{x}+\mathrm{1}}{dx} \\ $$$$=\left(\mathrm{60}−\mathrm{6}\sqrt{\mathrm{5}}\right)−\int_{\mathrm{2}} ^{\mathrm{4}} \left(\mathrm{2}{x}+\mathrm{1}\right)^{\mathrm{3}/\mathrm{2}} {dx} \\ $$$$=\left(\mathrm{60}−\mathrm{6}\sqrt{\mathrm{5}}\right)−\frac{\mathrm{1}}{\mathrm{5}}\left[\left(\mathrm{2}{x}+\mathrm{1}\right)^{\mathrm{5}/\mathrm{2}} \right]_{\mathrm{2}} ^{\mathrm{4}} \\ $$$$=\left(\mathrm{60}−\mathrm{6}\sqrt{\mathrm{5}}\right)−\left[\frac{\mathrm{243}}{\mathrm{5}}−\mathrm{5}\sqrt{\mathrm{5}}\right] \\ $$$$=\frac{\mathrm{57}}{\mathrm{5}}−\sqrt{\mathrm{5}} \\ $$