Menu Close

evaluate-4-x-dx-




Question Number 8783 by uchechukwu okorie favour last updated on 27/Oct/16
evaluate ∫4^x dx
evaluate4xdx
Answered by FilupSmith last updated on 27/Oct/16
4^x =e^(xln(4))   ∫4^x dx=∫e^(xln(4)) dx  for  ∫e^(ax+b) dx,   a,b=constants  u=ax+b  ⇒  du=adx  dx=(1/a)du  ∫e^(ax+b) dx=∫(1/a)e^u du=(1/a)e^u +C=(1/a)e^(ax+b) +C,   C=constant  ∫e^(xln(4)) dx=(1/(ln(4)))e^(xln(4)) +C  =(1/(2ln(2)))4^x +C       (answer)  =(1/(2ln(2)))2^(2x) +C  =(1/(ln(2)))2^(2x−1) +C    (alternate form)
4x=exln(4)4xdx=exln(4)dxforeax+bdx,a,b=constantsu=ax+bdu=adxdx=1adueax+bdx=1aeudu=1aeu+C=1aeax+b+C,C=constantexln(4)dx=1ln(4)exln(4)+C=12ln(2)4x+C(answer)=12ln(2)22x+C=1ln(2)22x1+C(alternateform)

Leave a Reply

Your email address will not be published. Required fields are marked *