Menu Close

Evaluate-5-5-25-x-2-dx-using-an-algebraic-method-Geometrical-mehod-thanks-in-advanced-great-mathematicians-




Question Number 72337 by Rio Michael last updated on 27/Oct/19
Evaluate  ∫_(−5) ^5 ((√(25−x^2 )) ) dx using  ⇒ an algebraic method  ⇒ Geometrical mehod   thanks in advanced great mathematicians
Evaluate55(25x2)dxusinganalgebraicmethodGeometricalmehodthanksinadvancedgreatmathematicians
Commented by mathmax by abdo last updated on 27/Oct/19
algebric method  let A=∫_(−5) ^5 (√(25−x^2 ))dx ⇒A=2∫_0 ^5 (√(25−x^2 ))dx  (even function) ⇒A =_(x=5sint)   2∫_0 ^(π/2) (√(25−25sin^2 t))5cost dt  =50 ∫_0 ^(π/2)  cos^2 t dt =25 ∫_0 ^(π/2) (1+cos(2t))dt  =((25π)/2) +((25)/2)[sin(2t)]_0 ^(π/2)  =((25π)/2)
algebricmethodletA=5525x2dxA=20525x2dx(evenfunction)A=x=5sint20π22525sin2t5costdt=500π2cos2tdt=250π2(1+cos(2t))dt=25π2+252[sin(2t)]0π2=25π2
Answered by MJS last updated on 27/Oct/19
geometrical method  y=(√(25−x^2 )) is the upper semicircle with center   ((0),(0) ) and radius 5; integral = area ⇒  ∫_(−5) ^5 (√(25−x^2 ))dx=((5^2 π)/2)=((25)/2)π  algebraic method  ∫(√(25−x^2 ))dx=       [t=arcsin (x/5) → dx=5cos t dt]  =25∫cos^2  t dt=((25)/2)∫1+cos 2t dt=  =((25)/2)x+((25)/4)sin 2t =((25)/2)arcsin (x/5) +(1/2)x(√(25−x^2 )) +C  now use borders
geometricalmethody=25x2istheuppersemicirclewithcenter(00)andradius5;integral=area5525x2dx=52π2=252πalgebraicmethod25x2dx=[t=arcsinx5dx=5costdt]=25cos2tdt=2521+cos2tdt==252x+254sin2t=252arcsinx5+12x25x2+Cnowuseborders
Commented by Rio Michael last updated on 27/Oct/19
thanks sir
thankssir

Leave a Reply

Your email address will not be published. Required fields are marked *