Menu Close

Evaluate-9-2-0-pi-2-sin-cos-cos-3-sin-3-2-d-




Question Number 2241 by Yozzi last updated on 10/Nov/15
Evaluate          (9/2)∫_0 ^(π/2) (((sinθcosθ)/(cos^3 θ+sin^3 θ)))^2 dθ.
Evaluate920π/2(sinθcosθcos3θ+sin3θ)2dθ.
Answered by Filup last updated on 11/Nov/15
=(9/2)∫_0 ^(π/2) ((sin^2 θcos^2 θ)/((cos^3 θ+sin^3 θ)^2 ))dθ    =(9/2)∫_0 ^(π/2) ((sin^2 θcos^2 θ)/((cos^3 θ+sin^3 θ)^2 ))×((sec^6 θ)/(sec^6 θ))dθ  =(9/2)∫_0 ^(π/2) (((sin^2 θ)/(cos^4 θ))/(cos^6 θsec^6 θ+2cos^3 θsin^3 θsec^6 θ+sin^6 θsec^6 θ))dθ  =(9/2)∫_0 ^(π/2) ((tan^2 θsec^2 θ)/(1+2sin^3 θsec^3 θ+tan^6 θ))dθ  =(9/2)∫_0 ^(π/2) ((tan^2 θsec^2 θ)/(1+2tan^3 θ+tan^6 θ))dθ  =(9/2)∫_0 ^(π/2) ((tan^2 θsec^2 θ)/((1+tan^3 θ)^2 ))dθ  u=tanθ       du=sec^2 θdθ  =(9/2)∫_0 ^(π/2) ((u^2 du)/((1+u^3 )^2 ))  s=u^3 +1      ds=3u^2 du  =(1/3)×(9/2)∫_0 ^(π/2) ((3u^2 du)/((1+u^3 )^2 ))  =(9/6)∫_0 ^(π/2) (ds/s^2 )  =(3/2)∫_0 ^(π/2) (1/s^2 )ds  =(3/2)[−(1/s)]_0 ^(π/2)   =(3/2)[−(1/(u^3 +1))]_0 ^(π/2)   =(3/2)[−(1/(tan^3 θ+1))]_0 ^(π/2)   lim_(x→(π/2)^− )  tan(x)=+∞  =−(3/2)((1/(lim_(θ→(π/2)^− ) (tanθ)+1))−(1/(tan(0)+1)))  =−(3/2)((1/∞)−(1/1))=−(3/2)(−1)  =(3/2)  ∴(9/2)∫_0 ^(π/2) (((sinθcosθ)/(cos^3 θ+sin^3 θ)))^2 dθ=(3/2)
=920π/2sin2θcos2θ(cos3θ+sin3θ)2dθ=920π/2sin2θcos2θ(cos3θ+sin3θ)2×sec6θsec6θdθ=920π/2sin2θcos4θcos6θsec6θ+2cos3θsin3θsec6θ+sin6θsec6θdθ=920π/2tan2θsec2θ1+2sin3θsec3θ+tan6θdθ=920π/2tan2θsec2θ1+2tan3θ+tan6θdθ=920π/2tan2θsec2θ(1+tan3θ)2dθu=tanθdu=sec2θdθ=920π/2u2du(1+u3)2s=u3+1ds=3u2du=13×920π/23u2du(1+u3)2=960π/2dss2=320π/21s2ds=32[1s]0π/2=32[1u3+1]0π/2=32[1tan3θ+1]0π/2limx(π/2)tan(x)=+=32(1limθ(π/2)(tanθ)+11tan(0)+1)=32(111)=32(1)=32920π/2(sinθcosθcos3θ+sin3θ)2dθ=32
Commented by Filup last updated on 11/Nov/15
Note:  lim_(x→(π/2)^+ )  tan(x)=−∞  lim_(x→(π/2)^− )  tan(x)=+∞    The reasoning for my chioce of tan(π/2)  is that for the intgral, x∈[0, π/2].  Thus as x→π/2, where x∈[0, π/2],  f(x)→+∞.
Note:limx(π/2)+tan(x)=limx(π/2)tan(x)=+Thereasoningformychioceoftan(π/2)isthatfortheintgral,x[0,π/2].Thusasxπ/2,wherex[0,π/2],f(x)+.

Leave a Reply

Your email address will not be published. Required fields are marked *