Menu Close

Evaluate-a-lim-x-x-2-3-27x-2-1-1-3-b-lim-x-x-2-x-2-1-c-lim-x-x-2-2-2x-3-d-lim-x-2x-1-4x-2-5-




Question Number 75931 by Rio Michael last updated on 21/Dec/19
Evaluate  a. lim_(x→∞) (((x^2 +3)/(27x^2 −1)))^(1/3)   b.  lim_(x→−∞) ((x−2)/( (√(x^2 +1))))  c. lim_(x→∞) ((x^2 +2)/(2x−3))  d. lim_(x→∞)  2x + 1 − (√(4x^2 +5))
$${Evaluate} \\ $$$${a}.\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\sqrt[{\mathrm{3}}]{\frac{{x}^{\mathrm{2}} +\mathrm{3}}{\mathrm{27}{x}^{\mathrm{2}} −\mathrm{1}}} \\ $$$${b}.\:\:\underset{{x}\rightarrow−\infty} {\mathrm{lim}}\frac{{x}−\mathrm{2}}{\:\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}} \\ $$$${c}.\underset{{x}\rightarrow\infty} {\:\mathrm{lim}}\frac{{x}^{\mathrm{2}} +\mathrm{2}}{\mathrm{2}{x}−\mathrm{3}} \\ $$$${d}.\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\mathrm{2}{x}\:+\:\mathrm{1}\:−\:\sqrt{\mathrm{4}{x}^{\mathrm{2}} +\mathrm{5}} \\ $$
Commented by turbo msup by abdo last updated on 21/Dec/19
a)we have lim_(x→∞)   ((x^2 +3)/(27x^2 −1))  =(1/(27)) ⇒lim_(x→∞)  ^3 (√((x^2 +3)/(27x^2 −1)))  =(1/((^3 (√(27))))) =(1/3)  b)lim_(x→−∞)    ((x−2)/( (√(x^2 +1))))  =lim_(x→−∞)   ((x−2)/( (√(x^2 (1+(1/x^2 ))))))  =lim_(x→−∞)      ((x−2)/(∣x∣(√(1+(1/x^2 )))))  =lim_(x→−∞)    (x/(−x))=−1
$$\left.{a}\right){we}\:{have}\:{lim}_{{x}\rightarrow\infty} \:\:\frac{{x}^{\mathrm{2}} +\mathrm{3}}{\mathrm{27}{x}^{\mathrm{2}} −\mathrm{1}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{27}}\:\Rightarrow{lim}_{{x}\rightarrow\infty} \overset{\mathrm{3}} {\:}\sqrt{\frac{{x}^{\mathrm{2}} +\mathrm{3}}{\mathrm{27}{x}^{\mathrm{2}} −\mathrm{1}}} \\ $$$$=\frac{\mathrm{1}}{\left(^{\mathrm{3}} \sqrt{\mathrm{27}}\right)}\:=\frac{\mathrm{1}}{\mathrm{3}} \\ $$$$\left.{b}\right){lim}_{{x}\rightarrow−\infty} \:\:\:\frac{{x}−\mathrm{2}}{\:\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}} \\ $$$$={lim}_{{x}\rightarrow−\infty} \:\:\frac{{x}−\mathrm{2}}{\left.\:\sqrt{{x}^{\mathrm{2}} \left(\mathrm{1}+\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\right.}\right)} \\ $$$$={lim}_{{x}\rightarrow−\infty} \:\:\:\:\:\frac{{x}−\mathrm{2}}{\mid{x}\mid\sqrt{\mathrm{1}+\frac{\mathrm{1}}{{x}^{\mathrm{2}} }}} \\ $$$$={lim}_{{x}\rightarrow−\infty} \:\:\:\frac{{x}}{−{x}}=−\mathrm{1} \\ $$
Commented by Rio Michael last updated on 21/Dec/19
thanks sir
$${thanks}\:{sir} \\ $$
Commented by turbo msup by abdo last updated on 21/Dec/19
c)lim_(x→∞)   ((x^2 +2)/(2x−3)) =lim_(x→∞)  (x^2 /(2x))  =lim_(x→∞)   (x/2) =∞  let f(x)=2x+1−(√(4x^2 +5))  ⇒f(x)=2x+1−∣2x∣(√(1+(5/(4x^2 ))))  ∼2x+1−∣2x∣(1+(5/(8x^2 )))  f(x)∼ 2x+1−2∣x∣−((10)/(8∣x∣)) so  f(x)∼1−((10)/(8x))  if (x→+∞)  and f(x)∼4x+1 +((10)/(8x)) (x→−∞) ⇒  lim_(x→+∞) f(x)=1 and  lim_(x→−∞)  f(x)=−∞
$$\left.{c}\right){lim}_{{x}\rightarrow\infty} \:\:\frac{{x}^{\mathrm{2}} +\mathrm{2}}{\mathrm{2}{x}−\mathrm{3}}\:={lim}_{{x}\rightarrow\infty} \:\frac{{x}^{\mathrm{2}} }{\mathrm{2}{x}} \\ $$$$={lim}_{{x}\rightarrow\infty} \:\:\frac{{x}}{\mathrm{2}}\:=\infty \\ $$$${let}\:{f}\left({x}\right)=\mathrm{2}{x}+\mathrm{1}−\sqrt{\mathrm{4}{x}^{\mathrm{2}} +\mathrm{5}} \\ $$$$\Rightarrow{f}\left({x}\right)=\mathrm{2}{x}+\mathrm{1}−\mid\mathrm{2}{x}\mid\sqrt{\mathrm{1}+\frac{\mathrm{5}}{\mathrm{4}{x}^{\mathrm{2}} }} \\ $$$$\sim\mathrm{2}{x}+\mathrm{1}−\mid\mathrm{2}{x}\mid\left(\mathrm{1}+\frac{\mathrm{5}}{\mathrm{8}{x}^{\mathrm{2}} }\right) \\ $$$${f}\left({x}\right)\sim\:\mathrm{2}{x}+\mathrm{1}−\mathrm{2}\mid{x}\mid−\frac{\mathrm{10}}{\mathrm{8}\mid{x}\mid}\:{so} \\ $$$${f}\left({x}\right)\sim\mathrm{1}−\frac{\mathrm{10}}{\mathrm{8}{x}}\:\:{if}\:\left({x}\rightarrow+\infty\right) \\ $$$${and}\:{f}\left({x}\right)\sim\mathrm{4}{x}+\mathrm{1}\:+\frac{\mathrm{10}}{\mathrm{8}{x}}\:\left({x}\rightarrow−\infty\right)\:\Rightarrow \\ $$$${lim}_{{x}\rightarrow+\infty} {f}\left({x}\right)=\mathrm{1}\:{and} \\ $$$${lim}_{{x}\rightarrow−\infty} \:{f}\left({x}\right)=−\infty \\ $$
Commented by turbo msup by abdo last updated on 21/Dec/19
you are welcome.
$${you}\:{are}\:{welcome}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *