Menu Close

Evaluate-cos-x-x-2-1-dx-




Question Number 69110 by Fawole last updated on 20/Sep/19
Evaluate ∫_(−∞) ^∞ ((cos(x))/(x^2 +1))dx
$${Evaluate}\:\int_{−\infty} ^{\infty} \frac{{cos}\left({x}\right)}{{x}^{\mathrm{2}} +\mathrm{1}}{dx} \\ $$
Commented by mathmax by abdo last updated on 20/Sep/19
  let I =∫_(−∞) ^(+∞)  ((cosx)/(x^2  +1))dx ⇒ I =Re( ∫_(−∞) ^(+∞)  (e^(ix) /(x^2  +1))dx) let  W(z) =(e^(iz) /(z^2  +1)) ⇒W(z) =(e^(iz) /((z−i)(z+i)))  so the poles of W are i and −i  residus theorem give ∫_(−∞) ^(+∞)  W(z)dz =2iπ Res(W,i)  Res(W,i) =lim_(z→i) (z−i)W(z) =(e^(−1) /(2i)) ⇒ ∫_(−∞) ^(+∞)  W(z)dz =2iπ×(e^(−1) /(2i))  =(π/e) ⇒ ∫_(−∞) ^(+∞)  ((cos(x))/(x^2  +1))dx =(π/e)
$$\:\:{let}\:{I}\:=\int_{−\infty} ^{+\infty} \:\frac{{cosx}}{{x}^{\mathrm{2}} \:+\mathrm{1}}{dx}\:\Rightarrow\:{I}\:={Re}\left(\:\int_{−\infty} ^{+\infty} \:\frac{{e}^{{ix}} }{{x}^{\mathrm{2}} \:+\mathrm{1}}{dx}\right)\:{let} \\ $$$${W}\left({z}\right)\:=\frac{{e}^{{iz}} }{{z}^{\mathrm{2}} \:+\mathrm{1}}\:\Rightarrow{W}\left({z}\right)\:=\frac{{e}^{{iz}} }{\left({z}−{i}\right)\left({z}+{i}\right)}\:\:{so}\:{the}\:{poles}\:{of}\:{W}\:{are}\:{i}\:{and}\:−{i} \\ $$$${residus}\:{theorem}\:{give}\:\int_{−\infty} ^{+\infty} \:{W}\left({z}\right){dz}\:=\mathrm{2}{i}\pi\:{Res}\left({W},{i}\right) \\ $$$${Res}\left({W},{i}\right)\:={lim}_{{z}\rightarrow{i}} \left({z}−{i}\right){W}\left({z}\right)\:=\frac{{e}^{−\mathrm{1}} }{\mathrm{2}{i}}\:\Rightarrow\:\int_{−\infty} ^{+\infty} \:{W}\left({z}\right){dz}\:=\mathrm{2}{i}\pi×\frac{{e}^{−\mathrm{1}} }{\mathrm{2}{i}} \\ $$$$=\frac{\pi}{{e}}\:\Rightarrow\:\int_{−\infty} ^{+\infty} \:\frac{{cos}\left({x}\right)}{{x}^{\mathrm{2}} \:+\mathrm{1}}{dx}\:=\frac{\pi}{{e}} \\ $$
Commented by Fawole last updated on 20/Sep/19
Nice solution
$${Nice}\:{solution} \\ $$
Commented by mathmax by abdo last updated on 20/Sep/19
thanks
$${thanks} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *