Menu Close

Evaluate-e-x-2-dx-Please-show-and-explain-working-




Question Number 2526 by Filup last updated on 22/Nov/15
Evaluate: ∫_(−∞) ^∞ e^(−x^2 ) dx  Please show and explain working
Evaluate:ex2dxPleaseshowandexplainworking
Commented by Filup last updated on 22/Nov/15
My current working:  (unsure if correct)  I=∫_(−∞) ^∞ e^(−x^2 ) dx=2∫_0 ^∞ e^(−x^2 ) dx  ∴I=∫_0 ^∞ e^(−x^2 ) dx+∫_0 ^∞ e^(−y^2 ) dy  I=∫_0 ^∞ ∫_0 ^∞ (e^(−x^2 ) +e^(−y^2 ) )dx dy
Mycurrentworking:(unsureifcorrect)I=ex2dx=20ex2dxI=0ex2dx+0ey2dyI=00(ex2+ey2)dxdy
Commented by 123456 last updated on 22/Nov/15
∫_0 ^(+∞) e^(−x^2 ) dx+∫_0 ^(+∞) e^(−y^2 ) dy≠∫_0 ^(+∞) ∫_0 ^(+∞) e^(−x^2 ) +e^(−y^2 ) dxdy  since  Left=(√π)  Right=∫_0 ^(+∞) ∫_0 ^(+∞) e^(−x^2 ) dxdy+∫_0 ^(+∞) ∫_0 ^(+∞) e^(−y^2 ) dxdy=diverge
+0ex2dx++0ey2dy+0+0ex2+ey2dxdysinceLeft=πRight=+0+0ex2dxdy++0+0ey2dxdy=diverge
Answered by 123456 last updated on 22/Nov/15
I=∫_(−∞) ^(+∞) e^(−x^2 ) dx>0      since e^(−x^2 ) ≥0∀x∈R  I^2 =(∫_(−∞) ^(+∞) e^(−x^2 ) dx)^2 =∫_(−∞) ^(+∞) e^(−x^2 ) dx∫_(−∞) ^(+∞) e^(−y^2 ) dy   squaring it  I^2 =∫_(−∞) ^(+∞) ∫_(−∞) ^(+∞) e^(−x^2 −y^2 ) dxdy     fubini theorem  x=rcos θ  y=rsin θ  dxdy=rdrdθ     jacobian  determinant (((∂x/∂r),(∂x/∂θ)),((∂y/∂r),(∂y/∂θ)))= determinant (((cos θ),(−rsin θ)),((sin θ),(rcos θ)))=r  0≤x<+∞,0≤y<+∞  r=(√(x^2 +y^2 ))  θ=arctan_2 (x,y)  0≤r<+∞,0≤θ<2π    (new limits)  I^2 =∫_0 ^(+∞) ∫_0 ^(2π) re^(−r^2 ) dθdr  I^2 =∫_0 ^(+∞) re^(−r^2 ) dr∫_0 ^(2π) dθ=(1/2)∙2π=π  ∫_0 ^(+∞) re^(−r^2 ) dr is solved at coment  I=(√π)  (>0)
I=+ex2dx>0sinceex20xRI2=(+ex2dx)2=+ex2dx+ey2dysquaringitI2=++ex2y2dxdyfubinitheoremx=rcosθy=rsinθdxdy=rdrdθjacobian|xrxθyryθ|=|cosθrsinθsinθrcosθ|=r0x<+,0y<+r=x2+y2θ=arctan2(x,y)0r<+,0θ<2π(newlimits)I2=+02π0rer2dθdrI2=+0rer2dr2π0dθ=122π=π+0rer2drissolvedatcomentI=π(>0)
Commented by Filup last updated on 22/Nov/15
Wow! ThankYou very much!
Wow!ThankYouverymuch!
Commented by Filup last updated on 22/Nov/15
How did you get dxdy=rdrdθ?
Howdidyougetdxdy=rdrdθ?
Commented by 123456 last updated on 22/Nov/15
jacobian of transformation  J(r,θ)=((∂(r,θ))/(∂(x,y)))= determinant (((∂x/∂r),(∂x/∂θ)),((∂y/∂r),(∂y/∂θ)))  dxdy=∣J(r,θ)∣drdθ
jacobianoftransformationJ(r,θ)=(r,θ)(x,y)=|xrxθyryθ|dxdy=∣J(r,θ)drdθ
Commented by Filup last updated on 22/Nov/15
I have no idea what that is. It seems  I have some research to conduct
Ihavenoideawhatthatis.ItseemsIhavesomeresearchtoconduct
Commented by 123456 last updated on 22/Nov/15
its like a subtituition method for multivariable integral  ∫_0 ^(+∞) e^(−r^2 ) rdr  u=−r^2 ,du=−2rdr  r=0⇒u=0  r→∞⇒u→−∞  −(1/2)∫_0 ^(−∞) e^u du=(1/2)∫_(−∞) ^0 e^u du=1/2  the jacobian generalize above idea to  multivariable integrais like  ∫_0 ^1 ∫_0 ^1 (x+y)(x−y)dxdy  u=x+y  v=x−y  ∫∫_D uv ∣J(u,v)∣dudv
itslikeasubtituitionmethodformultivariableintegral+0er2rdru=r2,du=2rdrr=0u=0ru120eudu=120eudu=1/2thejacobiangeneralizeaboveideatomultivariableintegraislike1010(x+y)(xy)dxdyu=x+yv=xyDuvJ(u,v)dudv
Commented by Filup last updated on 22/Nov/15
I just went and did a quick run−through.    J(r,θ)=((∂(r,θ))/(∂(x,y)))= determinant (((∂x/∂r),(∂x/∂θ)),((∂y/∂r),(∂y/∂θ)))  D=det(J(r,θ))=(∂x/∂r) (∂x/∂r)−(∂y/∂r) (∂y/∂θ)=r    ∴∫∫e^(−x^2 −y^2 ) dxdy = ∫∫De^(−x^2 −y^2 ) drdθ  =∫∫re^(−r^2 ) drdθ  ?
Ijustwentanddidaquickrunthrough.J(r,θ)=(r,θ)(x,y)=|xrxθyryθ|D=det(J(r,θ))=xrxryryθ=rex2y2dxdy=Dex2y2drdθ=rer2drdθ?
Commented by Filup last updated on 22/Nov/15
How do you determine the new limits?
Howdoyoudeterminethenewlimits?
Commented by 123456 last updated on 22/Nov/15
−r^2   −x^2 −y^2 =−r^2 (cos^2 θ+sin^2 θ)=−r^2
r2x2y2=r2(cos2θ+sin2θ)=r2
Commented by 123456 last updated on 22/Nov/15
its a bit complex (mr.prakash could explain it better to you later)  0≤x<+∞∧0≤y<+∞  this limit give all the real plane R^2   in the new cordinates (polar) the same  region is givd by  0≤r<+∞∧0≤θ<2π  the radius varry fom 0 to +∞ and you  rotate its to get the full R^2   in general drawing your region could  help you to change the variables.
itsabitcomplex(mr.prakashcouldexplainitbettertoyoulater)0x<+0y<+thislimitgivealltherealplaneR2inthenewcordinates(polar)thesameregionisgivdby0r<+0θ<2πtheradiusvarryfom0to+andyourotateitstogetthefullR2ingeneraldrawingyourregioncouldhelpyoutochangethevariables.
Commented by Filup last updated on 22/Nov/15
Whoops! Thanks for pointing out that  typo. Ok, I understand now!     I have done minimal work on matricies  but I worked it all out just now!  Thank you for helping me!    The limits are probably the most confusing  right now. I′ll look into it!
Whoops!Thanksforpointingoutthattypo.Ok,Iunderstandnow!IhavedoneminimalworkonmatriciesbutIworkeditalloutjustnow!Thankyouforhelpingme!Thelimitsareprobablythemostconfusingrightnow.Illlookintoit!
Commented by Filup last updated on 22/Nov/15
I figured out what i was misunderstanding  about the limits    ∫_0 ^( ∞) re^(−r^2 ) dr→ −(1/2)∫_0 ^∞ −2re^(−r^2 ) dr  u=−r^2 ,  du=−2rdr  r=∞, u=−∞  r=0, u=0  =−(1/2)∫_0 ^(−∞) e^u du  =(1/2)∫_(−∞) ^0 e^u du    Simple problem now understood!
Ifiguredoutwhatiwasmisunderstandingaboutthelimits0rer2dr1202rer2dru=r2,du=2rdrr=,u=r=0,u=0=120eudu=120euduSimpleproblemnowunderstood!

Leave a Reply

Your email address will not be published. Required fields are marked *