Menu Close

Evaluate-F-n-2-1-n-n-n-1-




Question Number 141328 by mnjuly1970 last updated on 17/May/21
...... Evaluate:       F :=Σ_(n=2) ^∞ (((−1)^n ζ(n))/(n+1)) =?  .......
Evaluate:F:=n=2(1)nζ(n)n+1=?.
Answered by Dwaipayan Shikari last updated on 17/May/21
ψ(z+1)=−γ+Σ_(n=2) ^∞ (−1)^n ζ(n)z^(n−1)   ∫_0 ^1 zψ(z+1)=−∫_0 ^1 γzdz+Σ_(n=2) ^∞ (((−1)^n ζ(n))/(n+1))  ⇒[logΓ(z+1)]_0 ^1 −∫_0 ^1 log(Γ(z+1))+(γ/2)=Σ_(n=2) ^∞ (−1)^n ((ζ(n))/(n+1))  ⇒∫_0 ^1 log(Γ(z))+log(z)dz+(γ/2)=Σ_(n=2) ^∞ (((−1)^n )/(n+1))ζ(n)  −((log(2π))/2)+1+(γ/2)=Σ_(n=2) ^∞ (((−1)^n )/(n+1))ζ(n)=log((e^(1+(γ/2)) /( (√(2π)))))
ψ(z+1)=γ+n=2(1)nζ(n)zn101zψ(z+1)=01γzdz+n=2(1)nζ(n)n+1[logΓ(z+1)]0101log(Γ(z+1))+γ2=n=2(1)nζ(n)n+101log(Γ(z))+log(z)dz+γ2=n=2(1)nn+1ζ(n)log(2π)2+1+γ2=n=2(1)nn+1ζ(n)=log(e1+γ22π)
Commented by mnjuly1970 last updated on 17/May/21
 grateful mr payan.  very nice....thank you for your  constan cooperation...
gratefulmrpayan.verynice.thankyouforyourconstancooperation
Commented by Dwaipayan Shikari last updated on 17/May/21
Thanks sir
Thankssir
Answered by mnjuly1970 last updated on 17/May/21
  ln(Γ(x+1))=−γx+Σ_(n=2) ^∞ (((−1)^n x^n ζ(n))/n)     diff both sides respect to ”x”     ψ(x+1)=−γ+Σ(−1)^n x^(n−1) ζ(n)  xψ(x+1)=−γx+Σ_(n=2) ^∞ (−1)^n x^n ζ(n)   ∫_0 ^1 x((1/x)+ψ(x))dx=−(γ^2 /2)+Σ(−1)^n ζ(n).(1/(n+1))    1+[xln(Γ(x))]_0 ^1 −∫_0 ^1 ln(Γ(x))dx=((−γ^2 )/2)+F  1+lim_(x→0^+ ) [(xln(Γ(x)))=^? 0]−(1/2)ln(2π))+(γ^2 /2)=F    F:=1+(γ^2 /2)−ln(√(2π)) .......✓✓     ? ::  lim_(x→0^+ ) (xln(((Γ(x+1))/x)))=           =lim_(x→0^+ ) xln(Γ(x+1))−lim_(x→0^+ ) xln(x)    =0
ln(Γ(x+1))=γx+n=2(1)nxnζ(n)ndiffbothsidesrespecttoxψ(x+1)=γ+Σ(1)nxn1ζ(n)xψ(x+1)=γx+n=2(1)nxnζ(n)01x(1x+ψ(x))dx=γ22+Σ(1)nζ(n).1n+11+[xln(Γ(x))]0101ln(Γ(x))dx=γ22+F1+limx0+[(xln(Γ(x)))=?0]12ln(2π))+γ22=FF:=1+γ22ln2π.?::limx0+(xln(Γ(x+1)x))==limx0+xln(Γ(x+1))limx0+xln(x)=0

Leave a Reply

Your email address will not be published. Required fields are marked *