Question Number 141328 by mnjuly1970 last updated on 17/May/21

Answered by Dwaipayan Shikari last updated on 17/May/21
![ψ(z+1)=−γ+Σ_(n=2) ^∞ (−1)^n ζ(n)z^(n−1) ∫_0 ^1 zψ(z+1)=−∫_0 ^1 γzdz+Σ_(n=2) ^∞ (((−1)^n ζ(n))/(n+1)) ⇒[logΓ(z+1)]_0 ^1 −∫_0 ^1 log(Γ(z+1))+(γ/2)=Σ_(n=2) ^∞ (−1)^n ((ζ(n))/(n+1)) ⇒∫_0 ^1 log(Γ(z))+log(z)dz+(γ/2)=Σ_(n=2) ^∞ (((−1)^n )/(n+1))ζ(n) −((log(2π))/2)+1+(γ/2)=Σ_(n=2) ^∞ (((−1)^n )/(n+1))ζ(n)=log((e^(1+(γ/2)) /( (√(2π)))))](https://www.tinkutara.com/question/Q141332.png)
Commented by mnjuly1970 last updated on 17/May/21

Commented by Dwaipayan Shikari last updated on 17/May/21

Answered by mnjuly1970 last updated on 17/May/21
![ln(Γ(x+1))=−γx+Σ_(n=2) ^∞ (((−1)^n x^n ζ(n))/n) diff both sides respect to ”x” ψ(x+1)=−γ+Σ(−1)^n x^(n−1) ζ(n) xψ(x+1)=−γx+Σ_(n=2) ^∞ (−1)^n x^n ζ(n) ∫_0 ^1 x((1/x)+ψ(x))dx=−(γ^2 /2)+Σ(−1)^n ζ(n).(1/(n+1)) 1+[xln(Γ(x))]_0 ^1 −∫_0 ^1 ln(Γ(x))dx=((−γ^2 )/2)+F 1+lim_(x→0^+ ) [(xln(Γ(x)))=^? 0]−(1/2)ln(2π))+(γ^2 /2)=F F:=1+(γ^2 /2)−ln(√(2π)) .......✓✓ ? :: lim_(x→0^+ ) (xln(((Γ(x+1))/x)))= =lim_(x→0^+ ) xln(Γ(x+1))−lim_(x→0^+ ) xln(x) =0](https://www.tinkutara.com/question/Q141343.png)