Menu Close

Evaluate-I-1-2-2-4-x-2y-dx-dy-




Question Number 6746 by Tawakalitu. last updated on 20/Jul/16
Evaluate     I = ∫_1 ^2   ∫_2 ^4    (x + 2y)  dx dy
$${Evaluate}\: \\ $$$$ \\ $$$${I}\:=\:\int_{\mathrm{1}} ^{\mathrm{2}} \:\:\int_{\mathrm{2}} ^{\mathrm{4}} \:\:\:\left({x}\:+\:\mathrm{2}{y}\right)\:\:{dx}\:{dy}\: \\ $$
Answered by FilupSmith last updated on 20/Jul/16
I=∫_1 ^( 2) [(1/2)x^2 +2xy]_2 ^4 dy  I=∫_1 ^( 2) (6+4y)dy  I=(6y+2y^2 )_1 ^2   I=(12+8)−(6+2)  I=20−8  I=12
$${I}=\int_{\mathrm{1}} ^{\:\mathrm{2}} \left[\frac{\mathrm{1}}{\mathrm{2}}{x}^{\mathrm{2}} +\mathrm{2}{xy}\right]_{\mathrm{2}} ^{\mathrm{4}} {dy} \\ $$$${I}=\int_{\mathrm{1}} ^{\:\mathrm{2}} \left(\mathrm{6}+\mathrm{4}{y}\right){dy} \\ $$$${I}=\left(\mathrm{6}{y}+\mathrm{2}{y}^{\mathrm{2}} \right)_{\mathrm{1}} ^{\mathrm{2}} \\ $$$${I}=\left(\mathrm{12}+\mathrm{8}\right)−\left(\mathrm{6}+\mathrm{2}\right) \\ $$$${I}=\mathrm{20}−\mathrm{8} \\ $$$${I}=\mathrm{12} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *