Menu Close

Evaluate-I-ab-sin-axcos-bxdx-if-a-b-and-use-it-to-0-n-sin-3xcos-2xdx-3-3-5-




Question Number 76965 by peter frank last updated on 02/Jan/20
Evaluate  I_(ab) =∫sin axcos bxdx  if a≠b and use it to  ∫_0 ^n sin 3xcos 2xdx=((3−(√3))/5)
EvaluateIab=sinaxcosbxdxifabanduseitto0nsin3xcos2xdx=335
Answered by mr W last updated on 01/Jan/20
sin (ax+bx)=sin ax cos bx+cos ax sin bx  sin (ax−bx)=sin ax cos bx−cos ax sin bx  ⇒sin ax cos bx=((sin (a+b)x+sin (a−b)x)/2)  I=∫sin ax cos bx dx  =(1/2)∫(sin (a+b)x+sin (a−b)x)dx  =−(1/2)[((cos (a+b)x)/(a+b))+((cos (a−b)x)/(a−b))]+C
sin(ax+bx)=sinaxcosbx+cosaxsinbxsin(axbx)=sinaxcosbxcosaxsinbxsinaxcosbx=sin(a+b)x+sin(ab)x2I=sinaxcosbxdx=12(sin(a+b)x+sin(ab)x)dx=12[cos(a+b)xa+b+cos(ab)xab]+C
Commented by peter frank last updated on 02/Jan/20
thank you
thankyou
Commented by peter frank last updated on 02/Jan/20
how about part b
howaboutpartb
Commented by mr W last updated on 02/Jan/20
i think you should be able to do  part b by yourself. but i can not,  because i don′t know what is n in  your question ∫_0 ^( n) .
ithinkyoushouldbeabletodopartbbyyourself.buticannot,becauseidontknowwhatisninyourquestion0n.
Commented by peter frank last updated on 02/Jan/20
thank you
thankyou

Leave a Reply

Your email address will not be published. Required fields are marked *