Menu Close

Evaluate-lim-x-pi-4-cos-x-sin-x-pi-4-x-cos-x-sin-x-




Question Number 280 by arnav last updated on 25/Jan/15
Evaluate lim_(x→π/4) ((cos x−sin x)/((π/4−x)(cos x+sin x)))
Evaluatelimxπ/4cosxsinx(π/4x)(cosx+sinx)
Answered by 123456 last updated on 18/Dec/14
lim_(x→π/4) ((cos x−sin x)/(((π/4)−x)(cos x+sin x)))→(0/0)  =lim_(x→π/4) ((−sin x−cos x)/(−(cos x+sin x)+((π/4)−x)(−sin x+cos x)))  =((−((√2)/2)−((√2)/2))/(−(((√2)/2)+((√2)/2))+((π/4)−(π/4))(−((√2)/2)+((√2)/2))))  =1
limxπ/4cosxsinx(π4x)(cosx+sinx)00=limxπ/4sinxcosx(cosx+sinx)+(π4x)(sinx+cosx)=2222(22+22)+(π4π4)(22+22)=1
Answered by 123456 last updated on 22/Dec/14
=lim_(x→π/4) ((cos x−sin x)/(((π/4)−x)(cos x+sin x)))  =lim_(x→π/4) ((sin ((π/4)−x))/(((π/4)−x)sin ((π/4)+x)))∙((√2)/( (√2)))  =lim_(x→π/4) ((sin ((π/4)−x))/((π/4)−x))lim_(x→π/4) (1/(sin ((π/4)+x)))  =lim_(y→0) ((sin y)/y)∙(1/(sin ((π/4)+(π/4))))  =1∙(1/(sin (π/2)))=1
=limxπ/4cosxsinx(π4x)(cosx+sinx)=limxπ/4sin(π4x)(π4x)sin(π4+x)22=limxπ/4sin(π4x)π4xlimxπ/41sin(π4+x)=limy0sinyy1sin(π4+π4)=11sinπ2=1