Menu Close

evaluate-lnx-dx-




Question Number 73545 by Rio Michael last updated on 13/Nov/19
evaluate  ∫lnx dx
evaluatelnxdx
Commented by Tony Lin last updated on 13/Nov/19
integration by part  ∫f ′(x)g(x)=f(x)g(x)−∫f(x)g ′(x)  ∫lnxdx  =∫(1×lnx)dx  =xlnx−∫(x×(1/x))dx  =xlnx−x+c
integrationbypartf(x)g(x)=f(x)g(x)f(x)g(x)lnxdx=(1×lnx)dx=xlnx(x×1x)dx=xlnxx+c
Commented by Rio Michael last updated on 13/Nov/19
thanks
thanks
Answered by ajfour last updated on 13/Nov/19
(d/dx)(xln x)=ln x+1  ⇒ d(xln x)= (ln x)dx+dx  Integrating    ∫d(xln x)=∫(ln x)dx+∫dx    xln x+c = ∫(ln x)dx + x  ⇒  ∫ln x dx = xln x−x+c .
ddx(xlnx)=lnx+1d(xlnx)=(lnx)dx+dxIntegratingd(xlnx)=(lnx)dx+dxxlnx+c=(lnx)dx+xlnxdx=xlnxx+c.
Commented by Rio Michael last updated on 13/Nov/19
i appreciate sir
iappreciatesir

Leave a Reply

Your email address will not be published. Required fields are marked *