Menu Close

Evaluate-n-0-1-5n-1-




Question Number 75547 by TawaTawa last updated on 12/Dec/19
      Evaluate:     Σ_(n = 0) ^∞ ((1/(5n + 1)))
Evaluate:n=0(15n+1)
Commented by mind is power last updated on 13/Dec/19
mor generaly  let S=Σ_(k≥0) (((−1)^k )/(ak+b))  withe  (a,b)∈N^(∗2)   withe gcd(a,b)=1  S=(1/b).Σ(((−1)^k )/(1+(a/b)k))  let f(x)=(1/(1+x^(a/b) ))  ∣x∣<1⇒f(x)=Σ_(k≥0) (−1)^k .x^((ak)/b)   let ε>0⇒  since we have unifirm cv we switch ÷  ∫_0 ^(1−ε) f(x)dx=Σ_(k≥0) (−1)^k ∫_0 ^(1−ε) x^((ak)/b) dx  S=Σ_(k≥0) (−1)^k .(1/(1+((ak)/b)))(1−ε)^(((ak)/b)+1)   we tack ε→0  justify by the fact  ∀ε>0 S=   Σ_(k≥0) (((−1)^k )/(1+((ak)/b)))(1−ε)^(((ak)/b)+1) Converge uniformily in compact [0,1−ε]  ∫_0 ^1 (dx/(1+x^(a/b) ))=S,(a/b)≠1  since  gcd(a,b)=1   x=tg^(2(b/a)) u  ⇒dx=((2b)/a)(1+tg^2 (u))tg^((2b−a)/a) (u)du  S=((2b)/a).∫_0 ^(π/4) tg^((2b−a)/a) (u)du  S=((2b)/a)∫_0 ^(π/4) sin^(((2b)/a)−1) (u).cos^(((−2b)/a)+2−1) (u)du  withe  B^∼ (x,y,s)=2∫_0 ^s cos^(2x−1) (t).sin^(2y−1) (t)dt  bS=(b/a)B^∼ ((b/a),1−(b/a),(π/4))  ⇒Σ_(k≥0) (((−1)^k )/(ak+b))=((B^∼ ((b/a),1−(b/a),(π/4)))/a)  ,∀(a,b)∈N^(∗2) withe gcd(a,b)=1  and (a,b)≠(1,1)
morgeneralyletS=k0(1)kak+bwithe(a,b)N2withegcd(a,b)=1S=1b.Σ(1)k1+abkletf(x)=11+xabx∣<1f(x)=k0(1)k.xakbletε>0sincewehaveunifirmcvweswitch÷01εf(x)dx=k0(1)k01εxakbdxS=k0(1)k.11+akb(1ε)akb+1wetackε0justifybythefactε>0S=k0(1)k1+akb(1ε)akb+1Convergeuniformilyincompact[0,1ε]01dx1+xab=S,ab1sincegcd(a,b)=1x=tg2baudx=2ba(1+tg2(u))tg2baa(u)duS=2ba.0π4tg2baa(u)duS=2ba0π4sin2ba1(u).cos2ba+21(u)duwitheB(x,y,s)=20scos2x1(t).sin2y1(t)dtbS=baB(ba,1ba,π4)k0(1)kak+b=B(ba,1ba,π4)a,(a,b)N2withegcd(a,b)=1and(a,b)(1,1)
Commented by mathmax by abdo last updated on 12/Dec/19
pehaps the Q is evaluate Σ_(n=0) ^∞  (((−1)^n )/(5n+1))
pehapstheQisevaluaten=0(1)n5n+1
Commented by TawaTawa last updated on 12/Dec/19
ok, help me sir
ok,helpmesir
Commented by TawaTawa last updated on 13/Dec/19
God bless you sir
Godblessyousir
Commented by mind is power last updated on 13/Dec/19
y′re Welcom
yreWelcom
Answered by mind is power last updated on 12/Dec/19
diverge +∞
diverge+
Answered by mind is power last updated on 12/Dec/19
Σ_(n≥0) ^(+∞) (1/(5n+1))≥Σ_(n≥2) (1/(5n))=(1/5)Σ_(n≥2) (1/n)......E  (1/(n+1))≤∫_n ^(n+1) (1/x)≤(1/n)  ⇒Σ_(n=2) ^(+N) (1/n)≥ln(N+1)−ln(2)⇒  lim _(N→∞) Σ_(n=2) ^N (1/n)≥lim_(N→+∞) {ln(N+1)−ln(2)}=+∞  by E we get +∞
+n015n+1n215n=15n21nE1n+1nn+11x1n+Nn=21nln(N+1)ln(2)limNNn=21nlimN+{ln(N+1)ln(2)}=+byEweget+
Commented by TawaTawa last updated on 12/Dec/19
God bless you sir.  Is there shortcut to know a series diverges
Godblessyousir.Isthereshortcuttoknowaseriesdiverges

Leave a Reply

Your email address will not be published. Required fields are marked *