Menu Close

Evaluate-n-1-1-n-1-n-1-1-2-1-3-1-4-




Question Number 2489 by Filup last updated on 21/Nov/15
Evaluate:  Σ_(n=1) ^∞ ((((−1)^(n+1) )/( (√n))))=1−(1/( (√2)))+(1/( (√3)))−(1/( (√4)))+...
Evaluate:n=1((1)n+1n)=112+1314+
Commented by Yozzi last updated on 21/Nov/15
Σ_(r=1) ^∞ (((−1)^(r+1) )/( (√n)))=Σ_(r=1) ^∞ (1/( (√(2r−1))))−Σ_(r=1) ^∞ (1/( (√(2r))))  Let f(x)=(2x−1)^(−1/2) . f is decreasing  and positive for x≥1 so the integral  test could show whether Σ_(r=1) ^∞ (1/( (√(2r−1)))) is  convergent or not.  Let I=∫_1 ^∞ f(x)dx=lim_(m→∞) ∫_1 ^m (2x−1)^(−1/2) dx  I=lim_(m→∞) ((((2x−1)^(1/2) )/(2×1/2)))∣_1 ^m   I=lim_(m→∞) [(√(2m−1))−(√(2×1−1))]  I=lim_(m→∞) [(√(2m−1))−1]=(√(2×∞−1))−1=∞  Thus,since I does not exist,Σ_(r=1) ^∞ (1/( (√(2r−1))))  is divergent.   {Hence, Σ_(r=1) ^∞ (((−1)^(n+1) )/( (√n))) is divergent.} (×)
r=1(1)r+1n=r=112r1r=112rLetf(x)=(2x1)1/2.fisdecreasingandpositiveforx1sotheintegraltestcouldshowwhetherr=112r1isconvergentornot.LetI=1f(x)dx=limm1m(2x1)1/2dxI=limm((2x1)1/22×1/2)1mI=limm[2m12×11]I=limm[2m11]=2×11=Thus,sinceIdoesnotexist,r=112r1isdivergent.{Hence,r=1(1)n+1nisdivergent.}(×)
Answered by Yozzi last updated on 21/Nov/15
Σ_(r=1) ^∞ ((((−1)^(n+1) )/( (√n)))) does not converge.  (Incorrect−disregard this contribution).
r=1((1)n+1n)doesnotconverge.(Incorrectdisregardthiscontribution).
Commented by prakash jain last updated on 21/Nov/15
The sequence may be conditinally convergent.  I think the tests in comment only prove  that it is not absolutely convergent.
Thesequencemaybeconditinallyconvergent.Ithinkthetestsincommentonlyprovethatitisnotabsolutelyconvergent.
Commented by 123456 last updated on 21/Nov/15
0<a_(n+1) <a_n  (by alternating test it converge)  its coditionly converge since  Σ1/(√n)  diverge by p series test
0<an+1<an(byalternatingtestitconverge)itscoditionlyconvergesinceΣ1/ndivergebypseriestest
Answered by prakash jain last updated on 21/Nov/15
η(s)=Σ_(n=1) ^∞ (((−1)^n )/n^s )   (Dirichlet eta function)  The given series=η((1/2))
η(s)=n=1(1)nns(Dirichletetafunction)Thegivenseries=η(12)

Leave a Reply

Your email address will not be published. Required fields are marked *