Menu Close

Evaluate-n-1-H-n-n-here-H-n-is-the-nth-harmonic-number-




Question Number 140206 by rs4089 last updated on 05/May/21
Evaluate      Σ_(n=1) ^∞ (H_n /(n!))  here H_n  is the nth harmonic number
$${Evaluate}\:\:\:\:\:\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{H}_{{n}} }{{n}!} \\ $$$${here}\:{H}_{{n}} \:{is}\:{the}\:{nth}\:{harmonic}\:{number} \\ $$
Answered by Dwaipayan Shikari last updated on 05/May/21
Σ_(n=1) ^∞ (H_n /(n!))=∫_0 ^1 Σ_(n=1) ^∞ (1/(n!))((1/(1−x))−(x^n /(1−x)))dx  =∫_0 ^1 (((e−1)/(1−x))−((e^x −1)/(1−x)))dx=e∫_0 ^1 ((1−e^(x−1) )/(1−x))dx      =e∫_0 ^1 ((1−e^(−z) )/z)dz=e(γ−Ei(−1))
$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{H}_{{n}} }{{n}!}=\int_{\mathrm{0}} ^{\mathrm{1}} \underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}!}\left(\frac{\mathrm{1}}{\mathrm{1}−{x}}−\frac{{x}^{{n}} }{\mathrm{1}−{x}}\right){dx} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \left(\frac{{e}−\mathrm{1}}{\mathrm{1}−{x}}−\frac{{e}^{{x}} −\mathrm{1}}{\mathrm{1}−{x}}\right){dx}={e}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}−{e}^{{x}−\mathrm{1}} }{\mathrm{1}−{x}}{dx}\:\:\:\: \\ $$$$={e}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}−{e}^{−{z}} }{{z}}{dz}={e}\left(\gamma−{Ei}\left(−\mathrm{1}\right)\right) \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *