Question Number 142290 by mnjuly1970 last updated on 29/May/21
$$\:\:\:{evaluate}: \\ $$$$\:\:\:\:\:\:\Theta:=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\zeta\left({n}+\mathrm{1}\right)−\mathrm{1}}{{n}+\mathrm{1}}\:=? \\ $$$$\:\:\:\:\: \\ $$
Answered by Dwaipayan Shikari last updated on 29/May/21
$$\underset{{n}=\mathrm{2}} {\overset{\infty} {\sum}}\frac{\zeta\left({n}\right)−\mathrm{1}}{{n}}=\underset{{n}=\mathrm{2}} {\overset{\infty} {\sum}}\underset{{k}=\mathrm{2}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{nk}^{{n}} } \\ $$$$=\underset{{k}=\mathrm{2}} {\overset{\infty} {\sum}}\left(−{log}\left(\mathrm{1}−\frac{\mathrm{1}}{{k}}\right)−\frac{\mathrm{1}}{{k}}\right) \\ $$$$=\underset{{n}\rightarrow\infty} {\mathrm{lim}}−{log}\left(\frac{\mathrm{1}}{\mathrm{2}}.\frac{\mathrm{2}}{\mathrm{3}}.\frac{\mathrm{3}}{\mathrm{4}}…\frac{{n}}{{n}+\mathrm{1}}\right)−\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{k}}+\mathrm{1} \\ $$$$={log}\left(\frac{\mathrm{2}}{\mathrm{1}}.\frac{\mathrm{3}}{\mathrm{2}}.\frac{\mathrm{4}}{\mathrm{3}}….\frac{{n}}{{n}−\mathrm{1}}.\frac{{n}+\mathrm{1}}{{n}}\right)−\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{k}}+\mathrm{1} \\ $$$$=\underset{{n}\rightarrow\infty} {\mathrm{lim}}{log}\left({n}+\mathrm{1}\right)−\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{k}}+\mathrm{1}=\mathrm{1}−\gamma \\ $$$$ \\ $$
Commented by mnjuly1970 last updated on 29/May/21
$${thanks}\:{alot}… \\ $$