Menu Close

evaluate-n-1-n-1-1-n-1-




Question Number 142290 by mnjuly1970 last updated on 29/May/21
   evaluate:        Θ:=Σ_(n=1) ^∞ ((ζ(n+1)−1)/(n+1)) =?
evaluate:Θ:=n=1ζ(n+1)1n+1=?
Answered by Dwaipayan Shikari last updated on 29/May/21
Σ_(n=2) ^∞ ((ζ(n)−1)/n)=Σ_(n=2) ^∞ Σ_(k=2) ^∞ (1/(nk^n ))  =Σ_(k=2) ^∞ (−log(1−(1/k))−(1/k))  =lim_(n→∞) −log((1/2).(2/3).(3/4)...(n/(n+1)))−Σ_(k=1) ^∞ (1/k)+1  =log((2/1).(3/2).(4/3)....(n/(n−1)).((n+1)/n))−Σ_(k=1) ^∞ (1/k)+1  =lim_(n→∞) log(n+1)−Σ_(k=1) ^∞ (1/k)+1=1−γ
n=2ζ(n)1n=n=2k=21nkn=k=2(log(11k)1k)=limnlog(12.23.34nn+1)k=11k+1=log(21.32.43.nn1.n+1n)k=11k+1=limnlog(n+1)k=11k+1=1γ
Commented by mnjuly1970 last updated on 29/May/21
thanks alot...
thanksalot

Leave a Reply

Your email address will not be published. Required fields are marked *