Menu Close

Evaluate-sin-3n-n-from-1-to-infinity-




Question Number 7191 by Tawakalitu. last updated on 15/Aug/16
Evaluate     Σ ((sin(3n))/n)     from  1  to  infinity
EvaluateΣsin(3n)nfrom1toinfinity
Answered by Yozzia last updated on 15/Aug/16
Define the function   f(x)=x for 0<x<1 , period=2.  For Fourier series of f having the form  (1) f(x)=(a_0 /2)+Σ_(n=1) ^∞ {a_n cos((nπx)/L)+b_n sin((nπx)/L)},  2L=2=period⇒L=1,  a_0 =(1/L)∫_c ^( c+2L) f(x) dx , c∈R.  ∴ For c=0, a_0 =(1/1)∫_0 ^( 2) xdx=(x^2 /2)∣_0 ^2 =2  ⇒(a_0 /2)=1.  a_n =(1/L)∫_c ^(c+2L) f(x)cos((nπx)/L)dx  n=1,2,3,...  Let c=0. ∴ a_n =(1/1)∫_0 ^( 2) xcosnπx dx  a_n =(x/(nπ))sinnπx∣_0 ^2 −∫_0 ^2 (1/(nπ))sinnπxdx  a_n =(1/(n^2 π^2 ))cosnπx∣_0 ^2 =(1/(n^2 π^2 ))(cos2nπ−1)=0  b_n =(1/L)∫_c ^( c+2L) f(x)sin((nπx)/L)dx  (n=1,2,3,...)  Take c=0. ∴ b_n =(1/1)∫_0 ^( 2) xsinnπx dx  b_n =((−xcosnπx)/(nπ))∣_0 ^2 −∫_0 ^2 ((−cosnπx)/(nπ))dx  b_n =((−2)/(nπ))+[(1/(n^2 π^2 ))sinnπx]_0 ^2   b_n =((−2)/(nπ))+0=((−2)/(nπ))  (n≠0).  ∴ in (1)  x=1+Σ_(n=1) ^∞ ((−2sinnπx)/(nπ))  x=1−(2/π)Σ_(n=1) ^∞ ((sinnπx)/n)  Let x=(3/π)∉Z (If x∈Z, x is a point of   discontinuity whose output is given by  ((f(x+0)+f(x−0))/2))  ∴ (3/π)=1−(2/π)Σ_(n=1) ^∞ ((sin3n)/n)  ⇒Σ_(n=1) ^∞ ((sin3n)/n)=(π/2)(1−(3/π))  Σ_(n=1) ^∞ ((sin3n)/n)=((π−3)/2)
Definethefunctionf(x)=xfor0<x<1,period=2.ForFourierseriesoffhavingtheform(1)f(x)=a02+n=1{ancosnπxL+bnsinnπxL},2L=2=periodL=1,a0=1Lcc+2Lf(x)dx,cR.Forc=0,a0=1102xdx=x2202=2a02=1.an=1Lcc+2Lf(x)cosnπxLdxn=1,2,3,Letc=0.an=1102xcosnπxdxan=xnπsinnπx02021nπsinnπxdxan=1n2π2cosnπx02=1n2π2(cos2nπ1)=0bn=1Lcc+2Lf(x)sinnπxLdx(n=1,2,3,)Takec=0.bn=1102xsinnπxdxbn=xcosnπxnπ0202cosnπxnπdxbn=2nπ+[1n2π2sinnπx]02bn=2nπ+0=2nπ(n0).in(1)x=1+n=12sinnπxnπx=12πn=1sinnπxnLetx=3πZ(IfxZ,xisapointofdiscontinuitywhoseoutputisgivenbyf(x+0)+f(x0)2)3π=12πn=1sin3nnn=1sin3nn=π2(13π)n=1sin3nn=π32
Commented by Tawakalitu. last updated on 15/Aug/16
Am very happy. Thank you sir. i really appreciate.
Amveryhappy.Thankyousir.ireallyappreciate.

Leave a Reply

Your email address will not be published. Required fields are marked *