Evaluate-sin-3n-n-from-1-to-infinity- Tinku Tara June 3, 2023 Number Theory 0 Comments FacebookTweetPin Question Number 7191 by Tawakalitu. last updated on 15/Aug/16 EvaluateΣsin(3n)nfrom1toinfinity Answered by Yozzia last updated on 15/Aug/16 Definethefunctionf(x)=xfor0<x<1,period=2.ForFourierseriesoffhavingtheform(1)f(x)=a02+∑∞n=1{ancosnπxL+bnsinnπxL},2L=2=period⇒L=1,a0=1L∫cc+2Lf(x)dx,c∈R.∴Forc=0,a0=11∫02xdx=x22∣02=2⇒a02=1.an=1L∫cc+2Lf(x)cosnπxLdxn=1,2,3,…Letc=0.∴an=11∫02xcosnπxdxan=xnπsinnπx∣02−∫021nπsinnπxdxan=1n2π2cosnπx∣02=1n2π2(cos2nπ−1)=0bn=1L∫cc+2Lf(x)sinnπxLdx(n=1,2,3,…)Takec=0.∴bn=11∫02xsinnπxdxbn=−xcosnπxnπ∣02−∫02−cosnπxnπdxbn=−2nπ+[1n2π2sinnπx]02bn=−2nπ+0=−2nπ(n≠0).∴in(1)x=1+∑∞n=1−2sinnπxnπx=1−2π∑∞n=1sinnπxnLetx=3π∉Z(Ifx∈Z,xisapointofdiscontinuitywhoseoutputisgivenbyf(x+0)+f(x−0)2)∴3π=1−2π∑∞n=1sin3nn⇒∑∞n=1sin3nn=π2(1−3π)∑∞n=1sin3nn=π−32 Commented by Tawakalitu. last updated on 15/Aug/16 Amveryhappy.Thankyousir.ireallyappreciate. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Evaluate-sin-n-n-From-1-to-infinity-Next Next post: Question-7193 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.